Density of the polynomials in the Hardy space of certain slit domains

Author:
John Akeroyd

Journal:
Proc. Amer. Math. Soc. **115** (1992), 1013-1021

MSC:
Primary 30D55; Secondary 30E10, 30H05, 46E15, 46J15

DOI:
https://doi.org/10.1090/S0002-9939-1992-1089399-9

MathSciNet review:
1089399

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: In this article we construct a Jordan arc in the complex plane, with endpoints 0 and 1, such that the polynomials are dense in the Hardy space .

**[1]**J. Akeroyd,*Polynomial approximation in the mean with respect to harmonic measure on crescents*, Trans. Amer. Math. Soc.**303**(1987), 193-199. MR**896016 (88f:30051)****[2]**-,*Point evaluations and polynomial approximation in the mean with respect to harmonic measure*, Proc. Amer. Math. Soc.**105**(1989), 575-581. MR**929403 (90a:46050)****[3]**C. J. Bishop, L. Carleson, J. B. Garnett, and P. W. Jones,*Harmonic measures supported on curves*, Pacific J. Math.**138**(1989), 233-236. MR**996199 (90d:30069)****[4]**P. S. Bourdon,*Density of the polynomials in Bergman spaces*, Pacific J. Math.**130**(1987), 215-221. MR**914099 (89a:46060)****[5]**J. Brennan,*Point evaluations, invariant subspaces and approximation in the mean polynomials*, J. Funct. Anal.**34**(1979), 407-420. MR**556263 (81h:46026)****[6]**P. L. Duren,*Theory of**-spaces*, Academic Press, New York, 1970. MR**0268655 (42:3552)****[7]**T. W. Gamelin,*Uniform algebras*, 2nd ed., Chelsea, New York, 1984.**[8]**R. C. Roan,*Composition operators on**with dense range*, Indiana Univ. Math. J.**27**(1978), 159-162. MR**0473905 (57:13564)**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC:
30D55,
30E10,
30H05,
46E15,
46J15

Retrieve articles in all journals with MSC: 30D55, 30E10, 30H05, 46E15, 46J15

Additional Information

DOI:
https://doi.org/10.1090/S0002-9939-1992-1089399-9

Article copyright:
© Copyright 1992
American Mathematical Society