Imbedding of any vector field in a scalar semilinear parabolic equation

Author:
P. Poláčik

Journal:
Proc. Amer. Math. Soc. **115** (1992), 1001-1008

MSC:
Primary 35K60

MathSciNet review:
1089411

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: The scalar semilinear parabolic equation

For any prescribed vector field on , a function is found such that the flow of (1), (2) has an invariant -dimensional subspace and the vector field generating the flow of (1), (2) on this invariant subspace coincides, in appropriate coordinates, with .

**[Am]**Herbert Amann,*Existence and regularity for semilinear parabolic evolution equations*, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4)**11**(1984), no. 4, 593–676. MR**808425****[An]**S. B. Angenent,*The Morse-Smale property for a semilinear parabolic equation*, J. Differential Equations**62**(1986), no. 3, 427–442. MR**837763**, 10.1016/0022-0396(86)90093-8**[F-M]**Bernold Fiedler and John Mallet-Paret,*A Poincaré-Bendixson theorem for scalar reaction diffusion equations*, Arch. Rational Mech. Anal.**107**(1989), no. 4, 325–345. MR**1004714**, 10.1007/BF00251553**[F-P]**Bernold Fiedler and Peter Poláčik,*Complicated dynamics of scalar reaction diffusion equations with a nonlocal term*, Proc. Roy. Soc. Edinburgh Sect. A**115**(1990), no. 1-2, 167–192. MR**1059652**, 10.1017/S0308210500024641**[G-T]**David Gilbarg and Neil S. Trudinger,*Elliptic partial differential equations of second order*, Springer-Verlag, Berlin-New York, 1977. Grundlehren der Mathematischen Wissenschaften, Vol. 224. MR**0473443****[G-H]**John Guckenheimer and Philip Holmes,*Nonlinear oscillations, dynamical systems, and bifurcations of vector fields*, Applied Mathematical Sciences, vol. 42, Springer-Verlag, New York, 1983. MR**709768****[He1]**Daniel Henry,*Geometric theory of semilinear parabolic equations*, Lecture Notes in Mathematics, vol. 840, Springer-Verlag, Berlin-New York, 1981. MR**610244****[He2]**-,*Perturbation of the boundary value problems for partial differential equations*, Seminaire Brasileiro de Analise, Trabalhos Apresentados Nr. 22, 1985.**[He3]**Daniel B. Henry,*Some infinite-dimensional Morse-Smale systems defined by parabolic partial differential equations*, J. Differential Equations**59**(1985), no. 2, 165–205. MR**804887**, 10.1016/0022-0396(85)90153-6**[Hi]**Morris W. Hirsch,*Differential topology*, Graduate Texts in Mathematics, vol. 33, Springer-Verlag, New York, 1994. Corrected reprint of the 1976 original. MR**1336822****[Ma]**Hiroshi Matano,*Convergence of solutions of one-dimensional semilinear parabolic equations*, J. Math. Kyoto Univ.**18**(1978), no. 2, 221–227. MR**501842****[Po1]**Peter Poláčik,*Convergence in smooth strongly monotone flows defined by semilinear parabolic equations*, J. Differential Equations**79**(1989), no. 1, 89–110. MR**997611**, 10.1016/0022-0396(89)90115-0**[Po2]**Peter Poláčik,*Complicated dynamics in scalar semilinear parabolic equations in higher space dimension*, J. Differential Equations**89**(1991), no. 2, 244–271. MR**1091478**, 10.1016/0022-0396(91)90121-O**[Si]**L. P. Šilnikov,*A contribution to the problem of the structure of an extended neighborhood of a structurally stable equilibrium of the saddle-focus type*, Math. USSR-Sb.**10**(1970), 91-102.**[Ze]**T. I. Zelenjak,*Stabilization of solutions of boundary value problems for a second-order parabolic equation with one space variable*, Differencial′nye Uravnenija**4**(1968), 34–45 (Russian). MR**0223758**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC:
35K60

Retrieve articles in all journals with MSC: 35K60

Additional Information

DOI:
https://doi.org/10.1090/S0002-9939-1992-1089411-7

Article copyright:
© Copyright 1992
American Mathematical Society