The first interval of stability of a periodic equation of Duffing type

Author:
Rafael Ortega

Journal:
Proc. Amer. Math. Soc. **115** (1992), 1061-1067

MSC:
Primary 34C25; Secondary 34D20

DOI:
https://doi.org/10.1090/S0002-9939-1992-1092925-7

MathSciNet review:
1092925

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Consider the differential equation of a nonlinear oscillator with linear friction and a -periodic external force. We find optimal bounds on the derivative of the restoring force in order to obtain a unique -periodic solution that is asymptotically stable.

**[1]**L. Cesari,*Asymptotic behavior and stability problems in ordinary differential equations*, Springer-Verlag, Berlin, 1971. MR**0350089 (50:2582)****[2]**L. K. Jackson,*Existence and uniqueness of solutions of boundary value problems for Lipschitz equations*, J. Differential Equations**32**(1979), 76-90. MR**532764 (81f:34022)****[3]**A. C. Lazer and P. J. McKenna,*On the existence of stable periodic solutions of differential equations of Duffing type*, Proc. Amer. Math. Soc.**110**(1990), 125-133. MR**1013974 (90m:34093)****[4]**E. Lee and L. Markus,*Foundations of optimal control theory*, Wiley, New York, 1967. MR**0220537 (36:3596)****[5]**W. Magnus and S. Winkler,*Hill's equation*, Dover, New York, 1979. MR**559928 (80k:34001)****[6]**J. J. Nieto and L. Sanchez,*Periodic boundary value problem for some Duffing equations*, Differential and Integral Equations**1**(1988), 399-408. MR**945817 (89f:34058)****[7]**R. Ortega,*Stability of a periodic problem of Ambrosetti-Prodi type*, Differential and Integral Equations**3**(1990), 275-284. MR**1025178 (90m:34104)****[8]**-,*Topological degree and stability of periodic solutions for certain differential equations*, J. London Math. Soc.**42**(1990), 505-516. MR**1087224 (92a:34042)****[9]**V. Pliss,*Nonlocal problems of the theory of oscillations*, Academic Press, New York, 1966. MR**0196199 (33:4391)****[10]**R. A. Smith,*Massera's convergence theorem for periodic nonlinear differential equations*, J. Math. Anal. Appl.**120**(1986), 679-708. MR**864784 (87k:34068)****[11]**T. Yoshizawa,*Stability theory and the existence of periodic solutions and almost periodic solutions*, Springer-Verlag, New York, 1975. MR**0466797 (57:6673)**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC:
34C25,
34D20

Retrieve articles in all journals with MSC: 34C25, 34D20

Additional Information

DOI:
https://doi.org/10.1090/S0002-9939-1992-1092925-7

Article copyright:
© Copyright 1992
American Mathematical Society