Global attractivity in nonlinear delay difference equations

Authors:
V. Lj. Kocić and G. Ladas

Journal:
Proc. Amer. Math. Soc. **115** (1992), 1083-1088

MSC:
Primary 39A10; Secondary 34K20, 39A11, 39A12

MathSciNet review:
1100657

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We obtain a set of sufficient conditions under which all positive solutions of the nonlinear delay difference equation , are attracted to the positive equilibrium of the equation. Our result applies, for example, to the delay logistic model and to the delay difference equation .

**[1]**M. O. Bergh and W. M. Getz,*Stability of discrete age-structured and aggregated delay-difference population models*, J. Math. Biol.**26**(1988), no. 5, 551–581. MR**970685**, 10.1007/BF00276060**[2]**G. Karakostas, Ch. G. Philos, and Y. G. Sficas,*The dynamics of some discrete population equations*(to appear).**[3]**V. Lj. Kocic and G. Ladas,*Global attractivity in second-order nonlinear difference equation*(to appear).**[4]**S. A. Kuruklis and G. Ladas,*Oscillations and global attractivity in a discrete delay logistic model*, Quart. Appl. Math.**50**(1992), no. 2, 227–233. MR**1162273****[5]**Simon A. Levin and Robert M. May,*A note on difference-delay equations*, Theoret. Population Biology**9**(1976), no. 2, 178–187. MR**0504043****[6]**E. C. Pielou,*An introduction to mathematical ecology*, Wiley-Interscience A Division of John Wiley & Sons, Inc., New York-London-Sydney, 1969. MR**0252051****[7]**-,*Population and community ecology*, Gorden and Breach, New York, 1974.**[8]**A. R. Watkinson,*Density-dependence in single-species populations of plants*, J. Theor. Biol.**83**(1980), 345-357.

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC:
39A10,
34K20,
39A11,
39A12

Retrieve articles in all journals with MSC: 39A10, 34K20, 39A11, 39A12

Additional Information

DOI:
http://dx.doi.org/10.1090/S0002-9939-1992-1100657-1

Keywords:
Global attractivity,
higher order nonlinear difference equation

Article copyright:
© Copyright 1992
American Mathematical Society