Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Isomorphism of the Toeplitz $ C\sp *$-algebras for the Hardy and Bergman spaces on certain Reinhardt domains


Author: Albert Jeu-Liang Sheu
Journal: Proc. Amer. Math. Soc. 116 (1992), 113-120
MSC: Primary 47B35; Secondary 32A07, 46L05, 47D25
DOI: https://doi.org/10.1090/S0002-9939-1992-1092926-9
MathSciNet review: 1092926
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: I. Raeburn has conjectured that the Toeplitz $ {C^*}$-algebras $ \mathcal{T}(D)$ and $ \mathcal{T}(\partial D)$ defined on the Bergman space $ {H^2}(D)$ and the Hardy space $ {H^2}(\partial D)$ of an arbitrary strongly pseudoconvex domain $ D$ in $ {\mathbb{C}^n}$ are isomorphic. Applying the groupoid $ {C^*}$-algebra approach of Curto, Muhly, and Renault to $ {C^*}$-algebras of Toeplitz type, we prove that this conjecture holds for (not even necessarily pseudoconvex) Reinhardt domains in $ {\mathbb{C}^2}$ satisfying a mild boundary condition.


References [Enhancements On Off] (What's this?)

  • [C] L. Coburn, Singular integral operators and Toeplitz operators on odd spheres, Indiana Univ. Math. J. 23 (1973), 433-439. MR 0322595 (48:957)
  • [CrR] D. Crocker and I. Raeburn, Toeplitz operators on certain weakly psuedoconvex domains, J. Austral. Math. Soc. 31 (1981), 1-14. MR 622808 (82j:47043)
  • [CuM] R. E. Curto and P. S. Muhly, $ {C^*}$-algebras of multiplication operators on Bergman spaces, J. Funct. Anal. 64 (1985), 315-329. MR 813203 (86m:47044)
  • [CuY] R. E. Curto and K. Yan, The spectral picture of Reinhardt measures, preprint. MR 1345033 (96i:47006)
  • [H] L. Hörmander, An introduction to complex analysis in several variables, van Nostrand, Princeton, NJ, 1966. MR 0203075 (34:2933)
  • [MRe] P. S. Muhly and J. N. Renault, $ {C^*}$-algebras of multivariable Wiener-Hopf operators, Trans. Amer. Math. Soc. 274 (1982), 1-44. MR 670916 (84h:46074)
  • [R] I. Raeburn, On Toeplitz operators associated with strongly pseudoconvex domains, Studia Math. 63 (1978), 253-258. MR 515494 (80a:47041)
  • [Re] J. N. Renault, A groupoid approach to $ {C^*}$-algebras, Lecture Notes in Math., vol. 793, Springer-Verlag, New York, 1980. MR 584266 (82h:46075)
  • [Ri] M. A. Rieffel, $ {C^*}$-algebras associated with irrational rotations, Pacific J. Math. 93 (1981), 415-429. MR 623572 (83b:46087)
  • [S] N. Salinas, The $ \bar \partial $-formalism and the $ {C^*}$-algebra of the Bergman $ n$-tuple, J. Operator Theory 22 (1989), 325-343. MR 1043731 (91b:47054)
  • [SShU] N. Salinas, A. J. L. Sheu, and H. Upmeier, Toeplitz operators on pseudo-convex domains and foliation $ {C^*}$-algebras, Ann. of Math. (2) 130 (1989), 531-565. MR 1025166 (91e:47026)
  • [Sh] A. J. L. Sheu, Reinhardt domains, boundary geometry and Toeplitz $ {C^*}$-algebras, J. Funct. Anal. 92 (1990) 264-311. MR 1064695 (92a:46068)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 47B35, 32A07, 46L05, 47D25

Retrieve articles in all journals with MSC: 47B35, 32A07, 46L05, 47D25


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1992-1092926-9
Article copyright: © Copyright 1992 American Mathematical Society

American Mathematical Society