Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)



Some applications of convolution of operators on Banach spaces

Author: Patrick N. Dowling
Journal: Proc. Amer. Math. Soc. 116 (1992), 191-195
MSC: Primary 46B22; Secondary 43A46, 46G10, 47B10, 47B38
MathSciNet review: 1094499
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Using convolution between functions and cone absolutely summing operators, we obtain characterizations of Banach spaces with the Radon-Nikodym property, the analytic Radon-Nikodym property and Banach spaces not containing a copy of $ {c_0}$.

References [Enhancements On Off] (What's this?)

  • [Bl] O. Blasco, Positive $ p$-summing operators on $ {L^p}$-spaces, Proc. Amer. Math. Soc. 100 (1987), 275-280. MR 884466 (88c:47033)
  • [B2] -, Convolution of operators and applications, Math. Z. 199 (1988), 109-114. MR 954755 (89i:47053)
  • [BD] A. V. Bukhvalov and A. A. Danilevich, Boundary properties of analytic and harmonic functions with values in a Banach space, Mat. Z. 31 (1982), 203-214; English transi., Math. Notes Acad. Sci. USSR 31 (1982), 104-110. MR 649004 (84f:46032)
  • [DU] J. Diestel and J. J. Uhl, Vector measures, Math. Surveys, no. 15, Amer. Math. Soc, Providence, RI, 1977. MR 0453964 (56:12216)
  • [Dl] P. N. Dowling, Duality in some vector-valued function spaces, Rocky Mountain J. Math. 22 (1992). MR 1180716 (93i:46064)
  • [D2] -, Radon-Nikodym properties associated with subsets of countable discrete abelian groups, Trans. Amer. Math. Soc. 327 (1991), 879-890. MR 1053113 (92a:46019)
  • [E] G. A. Edgar, Banach spaces with the analytic Radon-Nikodym property and compact abelian groups, Proceeding of the International Conference on Almost Everywhere Convergence in Probability and Ergodic Theory, Academic Press, Boston, MA, 1989, pp. 195-213. MR 1035247 (91b:46020)
  • [R] W. Rudin, Fourier analysis on groups, Tracts in Math., No. 12, Interscience, New York, 1962. MR 0152834 (27:2808)
  • [S] H. H. Schaefer, Banach lattices of positive operators, Grundlehren Math. Wiss., vol. 215, Springer-Verlag, Berlin and New York, 1974. MR 0423039 (54:11023)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 46B22, 43A46, 46G10, 47B10, 47B38

Retrieve articles in all journals with MSC: 46B22, 43A46, 46G10, 47B10, 47B38

Additional Information

Article copyright: © Copyright 1992 American Mathematical Society

American Mathematical Society