SAEKI'S IMPROVEMENT
OF THE VITALI-HAHN-SAKS-NIKODYM THEOREM
 HOLDS PRECISELY FOR BANACH SPACES HAVING COTYPE

PAUL ABRAHAM

(Communicated by Andrew M. Bruckner)

Abstract. We prove that a Banach space X has nontrivial cotype if and only if given any σ-field Σ and any sequence $\mu_n: \Sigma \to X$ of strongly additive vector measures such that for some $\gamma \geq 1$, $\limsup_{n\to\infty} \|\mu_n(E)\| \leq \gamma \liminf_{n\to\infty} \|\mu_n(E)\| < \infty$ for each $E \in \Sigma$ then $\{\mu_n: n \in \mathbb{N}\}$ is uniformly strongly additive.

In a recent note [S] Saeki introduced the notion of a measuroid and, based on his work in measuroids, was able to substantially improve the classical Vitali-Hahn-Saks-Nikodym Theorem [DU, p. 23]—but a price must be paid. The price: the Banach space must satisfy the following “fatness” condition: for each constant $C > 0$ there exists a positive integer m such that given $x_1, \ldots, x_m \in X$, $\|x_i\| \geq 1$ for each $i = 1, \ldots, m$, there exists $F \subseteq \{1, \ldots, m\}$ such that $\| \sum_{i \in F} x_i \| \geq C$.

The payoff: given a sequence (μ_n) of strongly additive X-valued vector measures defined on a σ-field Σ such that there exists a constant $\gamma \geq 1$ so that for each $E \in \Sigma \limsup_{n\to\infty} \|\mu_n(E)\| \leq \gamma \liminf_{n\to\infty} \|\mu_n(E)\| < \infty$ then $\{\mu_n\}$ is uniformly strongly additive.

In this note we relate Saeki’s fatness condition precisely with the geometry of the Banach space. First, a couple of definitions.

Definition 1. We say a Banach space X has cotype q (≥ 2) if there is a constant $K_q > 0$ such that for each $n \geq 1$, $x_1, \ldots, x_n \in X$, we have

$$\left(\sum_{k=1}^{n} \|x_k\|^q \right)^{1/q} \leq K_q \int_{0}^{1} \left\| \sum_{k=1}^{n} r_k(t)x_k \right\| \, dt$$

where (r_n) denotes the Rademacher sequence on $[0, 1]$.
Definition 2. We say a Banach space X contains the l^n_∞'s uniformly if there is a constant $\lambda > 1$ such that for each $n \geq 1$ there is an n-dimensional subspace E_n of X and isomorphism $\varphi_n: l^n_\infty \to E_n$ such that $\|\varphi_n\| \|\varphi_n^{-1}\| < \lambda$.

Maurey and Pisier [MP] have shown that for any Banach space X, X has some cotype if and only if X does not contain the l^n_∞'s uniformly.

Proposition 3. Let X be any Banach space. The following are equivalent:

(a) X has cotype.

(b) X satisfies the fatness condition.

(c) If (μ_n) is a sequence of strongly additive (respectively, countably additive) X-valued vector measures on a σ-algebra Σ such that there exists $\gamma \geq 1$ such that for each $A \in \Sigma$ we have $\limsup_{n \to \infty} \|\mu_n(A)\| \leq \gamma \liminf_{n \to \infty} \|\mu_n(A)\| < \infty$, then (μ_n) is uniformly strongly additive (respectively, uniformly countably additive).

(d) X does not contain the l^n_∞'s uniformly.

Proof. (a) \Rightarrow (b). Suppose X has cotype $q > 2$. Observe that if $x_1, \ldots, x_n \in X, \|x_i\| \geq 1$ for each $i = 1, \ldots, n$ then we have

$$n^{1/q} \leq \left(\sum_{i=1}^{n} \|x_i\|^q\right)^{1/q} \leq K_q \int_{0}^{1} \left(\sum_{k=1}^{n} r_k(t)x_k\right) dt \leq K_q 2^{-n} \sum_{\varepsilon_1 = \pm 1, \ldots, \varepsilon_n = \pm 1} \|\varepsilon_1 x_1 + \varepsilon_2 x_2 + \cdots + \varepsilon_n x_n\|,$$

where $K_q > 0$ is the cotype q constant. Since the right-hand sum has 2^n terms, for some choice say $\varepsilon'_1 = \pm 1, \ldots, \varepsilon'_n = \pm 1$ we have

$$n^{1/q} K_q^{-1} \leq \|\varepsilon'_1 x_1 + \varepsilon'_2 x_2 + \cdots + \varepsilon'_n x_n\|.$$

Let $P = \{i|\varepsilon'_i = 1\}$ and $N = \{i|\varepsilon'_i = -1\}$. From the triangle inequality and (*) we deduce $\|\sum_{i \in P} x_i\| \geq 2^{-1} n^{1/q} K_q^{-1}$ or $\|\sum_{i \in N} x_i\| \geq 2^{-1} n^{1/q} K_q^{-1}$.

Hence, given $C > 0$, choose n so that $2^{-1} n^{1/q} K_q^{-1} \geq C$ in order to fulfill the fatness condition.

(b) \Rightarrow (c). [S, Corollary 8].

(c) \Rightarrow (d). Suppose X contains the l^n_∞'s uniformly. Then, we have a constant $\lambda > 1$ such that for each $n \geq 1$ there is an n-dimensional subspace E_n of X and an isomorphism $\varphi_n: l^n_\infty \to E_n$ such that $\|\varphi_n\| = 1$ and $\|\varphi_n^{-1}\| < \lambda$.

Therefore, for each $n \geq 1$ and each $F \subseteq \{1, \ldots, n\}, F \neq \emptyset$,

$$\left(\sum_{i \in F} \varphi_n(e^{(n)}_i)\right), \left(\sum_{i \in F} \varphi_n(e^{(n)}_i)\right) \geq \lambda^{-1},$$

where $e^{(n)}_1, \ldots, e^{(n)}_n$ denotes the unit vector basis elements of l^n_∞.

Now, for each $n \geq 1$, define $\mu_n: P(\mathbb{N}) \to X$ by $\mu_n(\Delta) = \sum_{i \in \Delta \cap \{1, \ldots, n\}} \varphi_n(e^{(n)}_i)$. Clearly, each μ_n is finitely additive. In fact, each μ_n is countably additive since given $(B_i) \subseteq P(\mathbb{N}), B_i \cap B_j = \emptyset$ for each $i \neq j$, $B_i \cap \{1, \ldots, n\} = \emptyset$ for all i sufficiently large. From (**) and (***) it follows that for each $\Delta \in P(\mathbb{N})$,
\[\limsup_{n \to \infty} \|\mu_n(\Delta)\| \leq \lambda \liminf_{n \to \infty} \|\mu_n(\Delta)\| < \infty. \]
However, \((\mu_n)\) is not even uniformly strongly additive since \(\|\mu_n(\{n\})\| \geq \lambda^{-1} \) for each \(n \geq 1 \).

(d) \Rightarrow (a). One direction of the theorem of Maurey and Pisier already noted.

Remark 4. It is not difficult to see that in Proposition 3 we can add the following equivalent statement:

\((c')\) If \((\mu_n)\) is a sequence of \(X\)-valued vector measures on a \(\sigma\)-field \(\Sigma\) and \(m\) is a countably additive nonnegative measure such that for each \(n\), then \(\mu_n\) is \(m\)-continuous, and if there exists a constant \(\gamma \geq 1\) such that for each \(A \in \Sigma\) we have \(\limsup_{n \to \infty} \|\mu_n(A)\| \leq \gamma \liminf_{n \to \infty} \|\mu_n(A)\| < \infty\) then \(\{\mu_n\}\) is uniformly \(m\)-continuous.

Hence, we also have an improvement of the classical Vitali-Hahn-Saks Theorem [DU, p. 24] that holds precisely when the Banach space has cotype.

References

Department of Mathematics and Computer Science, Kent State University, Kent, Ohio 44242

E-mail address: pabraham@mcs.kent.edu