Homotopy type of path spaces

Author:
Diane Kalish

Journal:
Proc. Amer. Math. Soc. **116** (1992), 259-271

MSC:
Primary 58B05; Secondary 55P99, 58E05, 58E10

DOI:
https://doi.org/10.1090/S0002-9939-1992-1097347-0

Erratum:
Proc. Amer. Math. Soc. **118** (1993), null.

MathSciNet review:
1097347

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: This paper extends the Fundamental Theorem of Morse Theory to the two endmanifold case. The theorem relates the homotopy type of the space of paths connecting two submanifolds of a Riemannian manifold to the critical points of the energy function defined on this path space. Use of the author's formulation of the Morse index Theorem in this setting allows for a simple computation of the homotopy type, and several specific examples are worked out.

**[1]**W. Ambrose,*The index theorem in Riemannian geometry*, Ann. of Math. (2)**73**(1961), 49-86. MR**0133783 (24:A3608)****[2]**R. Bishop and R. Crittenden,*Geometry of manifolds*, Pure Appl. Math., vol. 15, Academic Press, New York, 1964. MR**0169148 (29:6401)****[3]**J. Bolton,*The Morse index theorem in the case of two variables endpoints*, J. Differential Geom.**12**(1977), 567-581. MR**512926 (80b:58025)****[4]**D. Kalish,*Aspects of Morse theory*, doctoral dissertation, CUNY, 1984.**[5]**-,*The Morse index theorem where the ends are submanifolds*, Trans. Amer. Math. Soc..**308**(1988), 341-348. MR**946447 (89i:58024)****[6]**J. Milnor,*Morse theory*, Ann. of Math. Stud., no. 51, Princeton Univ. Press, Princeton, NJ, 1973. MR**0163331 (29:634)****[7]**M. Morse,*The calculus of variations in the large*, Amer. Math. Soc. Colloq. Publ., vol. 18, Amer. Math. Soc., Providence, RI, 1934. MR**1451874 (98f:58070)**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC:
58B05,
55P99,
58E05,
58E10

Retrieve articles in all journals with MSC: 58B05, 55P99, 58E05, 58E10

Additional Information

DOI:
https://doi.org/10.1090/S0002-9939-1992-1097347-0

Article copyright:
© Copyright 1992
American Mathematical Society