Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

First return path derivatives


Author: Richard J. O’Malley
Journal: Proc. Amer. Math. Soc. 116 (1992), 73-77
MSC: Primary 26A24; Secondary 26A21
DOI: https://doi.org/10.1090/S0002-9939-1992-1097349-4
MathSciNet review: 1097349
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: A new type of path system is introduced. It is motivated by the Poincaré, first return, map of differentiable dynamics. Thus such systems are labeled first return path systems. It is shown that, though these are extremely thin paths, the systems possess interesting intersection properties that make the corresponding differentiation theory as rich as much thicker path systems.


References [Enhancements On Off] (What's this?)

  • [1] A. M. Bruckner, R. J. O'Malley, and B. S. Thomson, Path derivatives: A unified view of certain generalized derivatives, Trans. Amer. Math. Soc. 238 (1984), 97-123. MR 735410 (86d:26007)
  • [2] A. M. Bruckner, Differentiation of real functions, Lecture Notes in Math., vol. 659, Springer, Berlin and New York, 1978. MR 507448 (80h:26002)
  • [3] J. Marcinkiewicz, Sur les nombres dérivés, Fund. Math. 24 (1935), 305-308.
  • [4] R. J. O'Malley, Selective derivates, Acta Math. Acad. Sci. Hungar. 29 (1977), 77-97. MR 0437690 (55:10614)
  • [5] G. Petruska and M. Laczkovich, Remarks on a problem of A. M. Bruckner, Acta Math. Acad. Sci. Hungar. 38 (1981), 205-214. MR 634581 (83b:26005)
  • [6] W. Sierpínski, Sur une propriété de fonctions quelconques d'une variable réele, Fund. Math. 25 (1935), 1-4.
  • [7] L. E. Snyder, Continuous Stolz extensions and boundary functions, Trans. Amer. Math. Soc. 119 (1965), 417-427. MR 0180634 (31:4865)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 26A24, 26A21

Retrieve articles in all journals with MSC: 26A24, 26A21


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1992-1097349-4
Article copyright: © Copyright 1992 American Mathematical Society

American Mathematical Society