PRIMARY SUMMAND FUNCTIONS
ON THREE-DIMENSIONAL COMPACT SOLVMANIFOLDS

CAROLYN PFEFFER

(Communicated by Theodore W. Gamelin)

Abstract. Leonard Richardson has shown that for a certain class of three-
dimensional compact solvmanifolds, projections onto \(\pi \)-primary summands of
\(L^2(M) \) do not preserve the continuity of functions on \(M \). It is shown here
that if the \(\pi \)-primary projection of a continuous function is \(L^\infty \) then it is
actually continuous. From this it follows that there are continuous functions on
\(M \) whose \(\pi \)-primary projections are essentially unbounded.

Introduction

Let \(G \) be a solvable, connected, and simply connected Lie group, with Lie
algebra \(g \) and cocompact discrete subgroup \(\Gamma \). By a representation \(\pi \) of \(G \) we
shall mean a strongly continuous, unitary representation of \(G \) in some separable
Hilbert space \(H_\pi \); \(\pi \) will be called irreducible if the space \(H_\pi \) contains no
proper closed nontrivial subspace invariant under \(\pi \).

Let \(M \) be the space of right \(\Gamma \) cosets in \(G \) and give \(M \) the quotient topol-
ygy. There is a unique probability measure on \(M \) that is invariant under the
natural action of \(G \) by right translation. Forming \(L^2(M) \) with respect to this
measure, we have that the action of \(G \) on \(M \) induces a unitary action of \(G \)
on \(L^2(M) \): \(R(g)f(m) = f(mg) \) for \(f \in L^2(M) \), \(m \in M \), and \(g \in G \). \(R \) is
called the quasi-regular representation of \(G \) on \(L^2(M) \).

It is well known that \(L^2(M) \) decomposes into the direct sum \(\bigoplus H_\pi \), where
the spaces \(H_\pi \) are mutually orthogonal \(R(G) \)-invariant subspaces, and that \(R \)
on the space \(H_\pi \) is a finite multiple of the irreducible representation \(\pi \). [GGP,
§1.2]. We let \((\Gamma \backslash G)^\Lambda \) denote the set of irreducible representations appearing
in the quasi-regular representation \(R \) of \(G \) on \(L^2(M) \). Then the orthogonal
projection \(P_\pi \) of \(L^2(M) \) onto \(H_\pi \) is \(L^2 \)-continuous and preserves \(C^\infty(M) \)
[AB, Theorem 5].

Now let \(N \) be a nilpotent Lie group, connected and simply connected, with
Lie algebra \(n \) and cocompact discrete subgroup \(\Gamma \).

If the coadjoint orbits of the action of \(N \) on the dual \(n^* \) are linear vari-
eties, then \(\Gamma \backslash N \) possesses the property that the orthogonal projections \(P_\pi \) of
\(L^2(\Gamma \backslash N) \) onto \(H_\pi \) preserve continuity [Ri1, B]. These flat-orbit nilmanifolds

Received by the editors April 30, 1991.
1991 Mathematics Subject Classification. Primary 22E25.
share this property with compact quotients of the three-dimensional solvable group \(S_R \) by discrete subgroups. Here \(S_R \) denotes the semidirect product \(\mathbb{R} \ltimes \mathbb{R}^2 \), where \(\mathbb{R} \) acts on \(\mathbb{R}^2 \) via a one-parameter subgroup of rotations \([Ril]\).

This work was motivated by the fact that orthogonal projections onto \(\pi \)-primary summands preserves continuity of functions in \(L^2 \) of both compact quotients of flat-orbit nilmanifolds and compact quotients of the group \(S_R \).

In \([Ri2]\) Richardson proved a Fejer theorem for flat-orbit nilmanifolds. It can be shown that a similar Fejer theorem holds for compact quotients of \(S_R \) by discrete subgroups. Let \(S_H \) be the semidirect product \(\mathbb{R} \ltimes \mathbb{R}^2 \), where \(\mathbb{R} \) acts upon \(\mathbb{R}^2 \) via the one-parameter subgroup \(t \mapsto [x^\lambda, x^{-1}] \) in \(SL_2(\mathbb{R}) \), where \(\lambda + \lambda^{-1} = k + 1 \) for some integer \(k \geq 2 \). Let \(\Gamma \) be a cocompact discrete subgroup of \(S_H \). It is known that orthogonal projections \(P_\pi \) of \(L^2(\Gamma \backslash S_H) \) onto \(H_\pi \) do not preserve continuity \([Ril]\). It can be shown that no standard Fejer theorem exists for solvmanifolds of this type. However, the series determining the \(L^2 \) equivalence class of a projected function bears a resemblance to a standard lacunary Fourier series on \(\mathbb{R} \backslash \mathbb{Z} \) (see \([Z]\)). An adaptation of Sidon’s theorem on convergence of lacunary Fourier series \([Z, \text{Theorem VI.6.1}]\) is used to demonstrate that if the orthogonal projection \(P_\pi f \) of a continuous function \(f \) on \(\Gamma \backslash S_H \) is an \(L^\infty \) function, then \(P_\pi f \) is actually continuous. Together with Theorem 3.13 in \([Ri1]\), this implies that for each \(H_\pi \) there is continuous \(f \in L^2(\Gamma \backslash S_H) \) such that \(P_\pi f \) is discontinuous and essentially unbounded.

Preliminaries

Let \(G \) be a connected, simply connected Lie group with Lie algebra \(\mathfrak{g} \), and let \(\mathfrak{g}^* \) be the vector space of linear functionals on \(\mathfrak{g} \). We define a sequence of ideals of the Lie algebra \(\mathfrak{g} \) by \(\mathfrak{g}^{(0)} = \mathfrak{g} \), \(\mathfrak{g}^{(k)} = [\mathfrak{g}^{(k-1)}, \mathfrak{g}^{(k-1)}] \); this is called the derived series of \(\mathfrak{g} \), and \(\mathfrak{g} \) is said to be solvable if \(\mathfrak{g}^{(n)} = 0 \) for some \(n \in \mathbb{N} \). We define another sequence of ideals of the Lie algebra \(\mathfrak{g} \) by \(\mathfrak{g}^{(0)} = \mathfrak{g} \), \(\mathfrak{g}^{(k)} = [\mathfrak{g}^{(k-1)}, \mathfrak{g}] \); this is called the lower central series of \(\mathfrak{g} \), and \(\mathfrak{g} \) is said to be nilpotent if \(\mathfrak{g}^{(n)} = 0 \) for some \(n \in \mathbb{N} \) (see \([H, \S 3]\)). Throughout this paper, the term “nilmanifold” ("solvmanifold") will refer to compact spaces \(\Gamma \backslash G \), where \(G \) is nilpotent (solvable) and \(\Gamma \) is discrete and cocompact.

The coadjoint representation of \(G \) is of central importance in the representation theory of nilpotent and solvable Lie groups. The set of equivalence classes of irreducible representations of a nilpotent Lie group \(G \) is naturally parametrized by the orbit space \(\mathfrak{g}^*/\text{Ad}^*G \); this is also true for the (completely) solvable Lie groups examined in this work. This parametrization, due to A. A. Kirillov, is freely drawn upon in this work; for details, see \([CG, \text{Chapter II}]\).

There are two three-dimensional, solvable, nonnilpotent Lie groups with cocompact discrete subgroups, the groups \(S_H \) and \(S_R \). Their Lie algebras are three-dimensional vector spaces spanned by the vectors \(T, X, \) and \(Y \), where \(\exp sT = (s, 0, 0) \), \(\exp sX = (0, s, 0) \), and \(\exp sY = (0, 0, s) \).

There are five distinct compact quotients of \(S_R \) and infinitely many distinct compact quotients of \(S_H \).

We have the following compact quotients of \(S_H \), with convenient coordinatizations.

Suppose \(k \in \mathbb{Z}, \ k \geq 2 \). Define \(S_{H,k} = \mathbb{R} \ltimes \mathbb{R}^2 \), where \(\mathbb{R} \) acts on \(\mathbb{R}^2 \) via
the one-parameter subgroup \(\sigma_k(t) \) in \(SL_2(\mathbb{R}) \) with \(\sigma_k(1) = \begin{pmatrix} 1 & 1 \\ k-1 & k \end{pmatrix} \). (We will henceforth refer to the normal subgroup \(\mathbb{R}^2 \) as \(N \).) Then \(S_{H,k} \cong S_H \) for each \(k \). Let \(\Gamma_{H,k} = \{(p, m, n) \in S_{H,k} ; p, m, n \in \mathbb{Z}\} \); then each \(\Gamma_{H,k} \backslash S_{H,k} = M_{H,k} \) is a distinct compact quotient of \(S_H \).

The coordinatizations of the solvmanifolds \(S_{H,k} \) just described will be referred to as the integral coordinatizations of \(S_{H,k} \). Let \(A \in GL_2(\mathbb{R}) \) be such that

\[
A \sigma_k(t) A^{-1} = \begin{pmatrix} \lambda & 0 \\ 0 & \lambda^{-1} \end{pmatrix}
\]

where \(\lambda + \lambda^{-1} = k + 1 \);

if we recoordinatize \(N \) so that the action of \(A \) on \(N \) is given by this one-parameter subgroup, then \(\Gamma_{H,k} \cap N = A(\mathbb{Z}^2) \); the nondegenerate coadjoint orbits in this case are hyperbolic cylinders of the form \(xy = \lambda \), \(\lambda \in \mathbb{R} \). The 2-torus \(N \cap \Gamma_{H,k} \backslash N \) in this coordinatization will be a nonstandard torus, for all \(k \geq 2 \). This coordinatization of \(S_{H,k} \) will be referred to as the hyperbolic coordinatization. We henceforth fix \(S_{H,k} \) and refer to it as \(S \) and to \(\Gamma_{H,k} \) as \(\Gamma \).

Consider the quasi-regular representation of \(S \) on \(L^2(M) \). Since \(M \) is a compact solvmanifold, \(L^2(M) \) decomposes canonically into the discrete direct sum of subspaces \(H_\pi \), which are invariant with respect to the action of \(S \), and are such that when the action of \(S \) is restricted to the subspace \(H_\pi \), \(S \) acts on \(H_\pi \) as some finite multiple of an irreducible representation \(\pi \) of \(S \). There exists no canonical decomposition of \(H_\pi \) into irreducible subspaces unless \(H_\pi \) is itself irreducible.

\((\Gamma \backslash S)^\wedge \) will denote the set of unitary irreducible representations of \(S \) appearing in the quasi-regular representation \(R \) of \(S \) in \(L^2(\Gamma \backslash S)^\wedge \).

\((\Gamma \backslash S)^\wedge _\infty \) will denote the set of those representations \(\pi \in (\Gamma \backslash S)^\wedge \) that are infinite dimensional.

In the integral coordinatization of \(S \), the coadjoint orbits satisfy

\[
(1) \quad (k - 1)x^2 + (k - 1)xy - y^2 = K,
\]

so that the orbits are saturated in the \(T^* \)-direction. We will call \(\lambda \) an integral functional if \(\lambda|_n = \alpha X^* + \beta Y^*, \alpha, \beta \in \mathbb{Z} \), and denote by \(\mathscr{C}_\pi \) the orbit of \(\lambda \) in \(S^* \).

Fix some nonzero integral functional \(\lambda \in \mathscr{C}_\pi \). We define the character \(\chi_\lambda \) on the (abelian) nilradical \(n \) as follows: if \(\lambda|_n = \alpha X^* + \beta Y^* \) then

\[
(2) \quad \chi_\lambda(0, r, s) = e^{2\pi i (ar + \beta s)}.
\]

In the hyperbolic coordinatization of \(S \), integral functionals are elements of a nonstandard lattice obtained by transforming \(\mathbb{Z}^2 \). Let \(\{\lambda_i\}^{mul}_i \) be a set of representatives of distinct \(\Gamma \)-orbits in the integral functionals of \(\mathscr{C}_\pi \), \(\lambda_i \) an integral functional for each \(i \). Then for \(f \) a continuous function on the solvmanifold, we have

\[
(3) \quad P_\pi(f)(\Gamma(t, x, y)) = \sum_{i=1}^{mul} \sum_{\pi \in \mathbb{Z}} \hat{f}(n + t) \gamma_\pi^*(n) \lambda_i(0, x, y)
\]

where for fixed \(t \), \(\hat{f}(n + t) \) is the Fourier coefficient of \(f \) at \(\gamma_k(n) \lambda_i \) and where \(\gamma_k(n) = A \sigma_k(n) A^{-1} \).
1. A Sidon Theorem for Primary Summand Functions in $H_\pi \subset L^2(M)$

Suppose $S = R \ltimes N$ is coordinatized so that R acts on N via the one-parameter subgroup $\sigma_R(t) = [e^{it}, 1]$. Then the coadjoint orbits will be “hyperbolic cylinders,” saturated in the t-direction, given by the equations $xy = k$, $k \in R$. Let $\pi \in (\Gamma\backslash S)^\wedge$ be an infinite-dimensional representation. Let $P_\pi: L^2(\Gamma\backslash S) \to L^2(\Gamma\backslash S)$ be the orthogonal projection onto the π-primary summand of L^2; P_π does not preserve continuity of functions [Ri1]. Let (α, β) be a fixed lattice point in the coadjoint orbit \mathcal{O}_π, lying in the plane $RX^* + RY^*$, noting that with the chosen coordinatization of S, the torus $N \cap \Gamma\backslash N$ will be a nonstandard torus, and so $(\alpha, \beta) \in \mathcal{O}_\pi$ satisfying $\chi_{(\alpha,\beta)}(N \cap \Gamma) = 1$ will not have integer coordinates. We will call the set of (α', β') satisfying $\chi_{(\alpha',\beta')}(N \cap \Gamma) = 1$ the lattice \mathcal{L}^*. $\mathcal{L}^* \cap \mathcal{O}_\pi$ consists of finitely many Γ orbits of integral points.

Theorem 1.1. $\mathcal{L}^* \cap \mathcal{O}_\pi$ is a Sidon set for each $\pi \in (\Gamma\backslash S)^\wedge_\infty$.

Proof. See [Ru, p. 127].

Corollary 1.2. Suppose $f \in P_\pi(L^2(M))$ and $f \in L^\infty(M)$. Then for almost all fixed $t = t_0$, we have

$$f(\Gamma(t_0, x, y)) = \sum_{(\alpha, \beta) \in \mathcal{L}^* \cap \mathcal{O}_\pi} f(t_0, \cdot, \cdot)\chi_{(\alpha,\beta)}(x, y)$$

absolutely and uniformly convergent to f.

Proof. Follows from the definition of a Sidon set.

Corollary 1.3. Suppose $\pi \in (\Gamma\backslash S)^\wedge_\infty$ and that $f \in L^2(\Gamma\backslash S)$ is continuous on $\Gamma\backslash S$. If $P_\pi f$ is L^∞ then $P_\pi f$ is continuous.

Proof. Let $R = \{(t, 0, 0) \in S: t \in R\}$. Then R is a subgroup of S.

Suppose $f \in L^2(\Gamma\backslash S)$ is continuous. Then for $(\alpha, \beta) \in \mathcal{L}^*$, we have

$$f(t, \cdot, \cdot)\chi_{(\alpha,\beta)}(x, y) = \int_{T^2} f(t, x, y)\chi_{-(\alpha,\beta)}(x, y)\,dx\,dy$$

continuous on R.

If $P_\pi f$ is in L^∞ then we have

$$\sum_{(\alpha, \beta) \in \mathcal{L}^* \cap \mathcal{O}_\pi} |f(t, \cdot, \cdot)\chi_{(\alpha,\beta)}| < K\|f\|_\infty$$

where K is a constant not depending on f.

Since the inequality is independent of t, we have that

$$P_\pi f = \sum_{(\alpha, \beta) \in \mathcal{L}^* \cap \mathcal{O}_\pi} f(t, \cdot, \cdot)\chi_{-(\alpha,\beta)}(x, y)$$

is the uniformly convergent sum of functions continuous on S. Since $P_\pi f$ also possesses left Γ-invariance, $P_\pi f$ is continuous on $\Gamma\backslash S$.

Corollary 1.4. There exists f, continuous on M, such that $P_\pi f$ is essentially unbounded.
Proof. Example 5.3 in [Ri1] shows that for each orthogonal projection P_π, there must exist an $f \in C(M)$ such that $P_\pi f$ is not continuous. By Corollary 1.3, however, $P_\pi f$ must then be essentially unbounded.

Corollary 1.5. If $f \in P_\pi(L^2(M))$ is L^∞, then for a.e. fixed t_0 we have that

$$f(t_0, \cdot, \cdot): N \cap \Gamma \setminus N \to \mathbb{C}$$

is a continuous function on $N \cap \Gamma \setminus N \cong T^2$.

Proof. By Corollary 1.2, we have that for $f \in P_\pi(L^2(\Gamma \setminus S))$ essentially bounded, inequality (4) holds, for a.a. t_0.

Thus for a.a. fixed t_0,

$$f(\Gamma(t_0, x, y)) = \sum f(t_0, \cdot, \cdot)\chi(\alpha, \beta)(x, y)$$

is a uniformly convergent sum of functions that are continuous on $N \cap \Gamma \setminus N$ and so is itself continuous on $N \cap \Gamma \setminus N$.

Acknowledgment

This work formed part of my Ph.D. thesis, completed under the guidance of Leonard Richardson at Louisiana State University. I am grateful to the referee for suggestions that greatly simplified the presentation of these results.

References

Department of Mathematics, Rutgers University, New Brunswick, New Jersey 08903

Current address: Department of Mathematics, Florida State University, Boca Raton, Florida 33431

E-mail address: pfeffer@sunrise.cse.fau.edu