Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)



Primary summand functions on three-dimensional compact solvmanifolds

Author: Carolyn Pfeffer
Journal: Proc. Amer. Math. Soc. 116 (1992), 213-217
MSC: Primary 22E25; Secondary 22E40
MathSciNet review: 1112499
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Leonard Richardson has shown that for a certain class of three-dimensional compact solvmanifolds, projections onto $ \pi $-primary summands of $ {L^2}\left( M \right)$ do not preserve the continuity of functions on $ M$. It is shown here that if the $ \pi $-primary projection of a continuous function is $ {L^\infty }$ then it is actually continuous. From this it follows that there are continuous functions on $ M$ whose $ \pi $-primary projections are essentially unbounded.

References [Enhancements On Off] (What's this?)

  • [AGH] L. Auslander, L. Green, and F. Hahn, Flows on homogeneous spaces, Ann. Math. Stud., no. 53, Princeton Univ. Press, Princeton, NJ, 1963.
  • [AB] L. Auslander and J. Brezin, Uniform distribution in solvmanifolds, Adv. Math. 7 (1971), 111-144. MR 0301137 (46:295)
  • [B] J. Brezin, Geometry and the method of Kirillov, Lecture Notes in Math., vol. 466, Springer-Verlag, New York, 1975, pp. 13-25. MR 0387484 (52:8326)
  • [CG] L. Corwin and F. Greenleaf, Representations of nilpotent Lie groups and their applications, Part 1: Basic theory and examples, Cambridge Univ. Press, Cambridge, 1990. MR 1070979 (92b:22007)
  • [GGP] I. M. Gelfand, M. Graev, and I. Pyatetskii-Shapiro, Representation theory and automorphic functions, Saunders, Philadelphia, 1969. MR 0233772 (38:2093)
  • [H] J. Humphreys, Introduction to Lie algebras and representation theory, Graduate Texts in Math., vol. 9, Springer-Verlag, New York, 1972. MR 0323842 (48:2197)
  • [Ril] L. Richardson, A class of idempotent measures on compact nilmanifolds, Acta Math. 135 (1975), 129-154. MR 0486324 (58:6080)
  • [Ri2] -, $ N$-step nilpotent Lie groups with flat Kirillov orbits, Colloq. Math. 52 (1987), 285-287. MR 893545 (88m:22016)
  • [Ru] W. Rudin, Fourier analysis on groups, Interscience, New York, 1962. MR 0152834 (27:2808)
  • [Z] A. Zygmund, Trigonometric series, vol. 1, Cambridge Univ. Press, Cambridge, 1959. MR 0107776 (21:6498)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 22E25, 22E40

Retrieve articles in all journals with MSC: 22E25, 22E40

Additional Information

Article copyright: © Copyright 1992 American Mathematical Society

American Mathematical Society