One radius theorem for the eigenfunctions of the invariant Laplacian

Author:
E. G. Kwon

Journal:
Proc. Amer. Math. Soc. **116** (1992), 27-34

MSC:
Primary 35P05; Secondary 35J05

DOI:
https://doi.org/10.1090/S0002-9939-1992-1113644-4

MathSciNet review:
1113644

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let be the open unit ball in with its boundary . Suppose that and for some . If for every there corresponds an and an automorphism with such that

**[1]**K. Izuchi,*The one radius theorem is not true for bounded real analytic functions*, Proc. Amer. Math. Soc.**130**(1988), 823-830. MR**947666 (89h:26022)****[2]**Oliver D. Kellog,*Converses of Gauss's theorem of the arithmetic mean*, Trans. Amer. Math. Soc.**30**(1934), 227-242. MR**1501739****[3]**Lucy John Slater,*Generalized hypergeometric functions*, Cambridge Univ. Press, London and New York, 1966. MR**0201688 (34:1570)****[4]**Walter Rudin,*Function theory in the unit ball of*, Springer-Verlag, New York, 1980. MR**601594 (82i:32002)**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC:
35P05,
35J05

Retrieve articles in all journals with MSC: 35P05, 35J05

Additional Information

DOI:
https://doi.org/10.1090/S0002-9939-1992-1113644-4

Keywords:
Invariant Laplacian,
one radius property

Article copyright:
© Copyright 1992
American Mathematical Society