Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

On the Cartesian products of Lindelöf spaces with one factor hereditarily Lindelöf


Author: K. Alster
Journal: Proc. Amer. Math. Soc. 116 (1992), 207-212
MSC: Primary 54B10; Secondary 54D20
DOI: https://doi.org/10.1090/S0002-9939-1992-1118084-X
MathSciNet review: 1118084
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: E. Michael asked the following question: Is there a space $ X$ such that $ Y \times X$ is Lindelöf for every hereditarily Lindelöf space $ Y$ but $ {X^2}$ is not. The aim of this paper is to present a construction that provides such an example.


References [Enhancements On Off] (What's this?)

  • [Al] K. Alster, A class of spaces whose Cartesian product with every hereditarily Lindelöf space is Lindelöf, Fund. Math. 114 (1981), 173-181. MR 644402 (83c:54029)
  • [A2] -, A note on Michael's problem concerning the Lindelöf property in the Cartesian products, Trans. Amer. Math. Soc. 278 (1983), 369-375. MR 697081 (84i:54009)
  • [A3] -, On Michael's problem concerning the Lindelöf property in the Cartesian products, Fund. Math. 121 (1984), 149-167. MR 765331 (86a:54007)
  • [A4] -, On a question of Archangelskij concerning Lindelöf spaces with countable pseudocharacter, Proc. Amer. Math. Soc. 95 (1985), 320-322. MR 801347 (86k:54037)
  • [A5] -, On spaces whose product with every Lindelöf space is Lindelöf, Colloq. Math. 54 (1987), 171-178. MR 948511 (89i:54031)
  • [A6] -, On the class of all spaces of weight not greater than $ {\omega _1}$ whose Cartesian product with every Lindelöf space is Lindelöf, Fund. Math. 129 (1988), 133-140. MR 959437 (89i:54030)
  • [E] R. Engelking, General topology, revised and completed edition, 1989. MR 1039321 (91c:54001)
  • [J] T. Jech, Lectures in set theory, Lecture Notes in Math., vol. 217, Springer-Verlag, Berlin, 1971. MR 0321738 (48:105)
  • [T] S. Todorcevic, On the Lindelöf property of Aronszajn trees, Proc. of the Sixth Topological Symposium 1986, Research and Exposition in Math., Berlin, 1988, pp. 577-588. MR 952640 (89g:54056)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 54B10, 54D20

Retrieve articles in all journals with MSC: 54B10, 54D20


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1992-1118084-X
Keywords: Lindelöf space, hereditarily Lindelöf, Cartesian product
Article copyright: © Copyright 1992 American Mathematical Society

American Mathematical Society