ON THE CARTESIAN PRODUCTS OF LINDELÖF SPACES WITH ONE FACTOR HEREDITARILY LINDELÖF

K. ALSTER

(Communicated by Dennis R. Burke)

Abstract. E. Michael asked the following question: Is there a space X such that $Y \times X$ is Lindelöf for every hereditarily Lindelöf space Y but X^2 is not. The aim of this paper is to present a construction that provides such an example.

In this paper we construct for every $n \in \mathbb{N}$ a space X_n such that for every hereditarily Lindelöf space Y, $Y \times X_n$ is Lindelöf and X_n^{n+1} is not. Moreover, we also obtain, using the same technique, a space X_ω such that for every $n \in \mathbb{N}$ and every hereditarily Lindelöf space Y, $Y \times X_\omega^n$ is Lindelöf but X_ω^ω is not.

Let us recall that another example of X_ω was presented in [A2, A3]. The present construction is much simpler than the previous one.

For related results and constructions see [A5, T, A6, A4].

Our topological terminology follows [E]. In particular, if M is a subspace of a topological space X then the symbol X_M stands for the set X with a new topology generated by $\mathcal{T} = \{U \subset X : U$ is open in $X\} \cup \{\{x\} : x \in X \setminus M\}$. In the sequel Q and N stand for the set of all rational and natural numbers respectively. Let us denote by \mathcal{B} a countable base for Q consisting of open intervals. If $x \in Q$ then put $\mathcal{B}_x = \{B \in \mathcal{B} : x \in B\}$. The symbols ω and ω_1 denote the first infinite ordinal number and the first uncountable ordinal number, respectively.

The projection of Q^{ω_1} onto Q^T where $T \subset \omega_1$ will be denoted by P_T. If α is an ordinal number then we shall identify α with the set of its predecessors. If $\alpha < \beta$, and $x \in Q^\beta$ then let us denote $P_\alpha(x)$ by $x|\alpha$.

Example. For all $n \in \mathbb{N}$ there is X_n such that for every hereditarily Lindelöf space Y, $Y \times (X_n)^n$ is Lindelöf but $(X_n)^{n+1}$ is not. Moreover, there is also X_ω such that for all $n \in \mathbb{N}$, $Y \times (X_\omega)^n$ is Lindelöf but $(X_\omega)^{\omega}$ is not.

We now consider the proof of the example. There exists a family $\{A_\alpha : 1 \leq \alpha < \omega_1\}$ such that A_α is a countable set consisting of strictly increasing sequences of rational numbers of length α for $1 \leq \alpha < \omega_1$.
(2) if $\alpha < \beta < \omega_1$ then $P_\alpha(A_\beta) = A_\alpha$,
(3) if $a = (a(\lambda))_{\lambda < \alpha} \in A_\alpha$ then a is a continuous function from α into Q and $\sup\{a(\lambda): \lambda < \alpha\}$ is a rational number (see [J, p. 91], the construction of the Aronszajn tree).

Let us attach to $a \in A_\alpha$, for $1 \leq \alpha < \omega_1$, $x_\alpha \in Q^{\omega_1}$ such that

$$x_\alpha(\beta) = \begin{cases} a(\beta) & \text{if } \beta < \alpha, \\ \sup\{a(\lambda): \lambda < \alpha\} & \text{if } \beta \geq \alpha. \end{cases}$$

Put $Z_\alpha = \{x \in Q^{\omega_1}: \text{there is a } a \in A_\alpha \text{ such that } x = x_\alpha\}$. If $x \in \bigcup\{Z_\alpha: 1 \leq \alpha < \omega_1\}$ then $a(x)$ is such an ordinal number that $x \in Z_{a(x)}$.

Let $\{S_i: i \leq n+1\}$ be a cover of ω_1 consisting of pairwise disjoint stationary sets and put $K_i = \bigcup\{S_j: j \neq i\}$ for all $i \leq n+1$.

If S is a subset of ω_1 then put $X(S) = \bigcup\{Z_\alpha: a \in S\}$.

The desired space X_n is defined by $X_n = \bigoplus_{i \leq n+1}(X(\omega_1)_{X(K_i)})$ where $X(\omega_1)$ and $X(K_i)$ are subspaces of Q^{ω_1}.

In case of X_ω we have to consider infinite partition $\{S_n: n \in N\}$ of ω_1 consisting of stationary sets and put

$$X_\omega = \bigoplus_{i=1}^{\infty}(X(\omega_1))_{X(K_i)}, \quad \text{where } K_i = \bigcup\{S_j: j \neq i\}.$$

Since $D = \{x = (x_i)_{i=1}^{n+1} \in \prod_{i=1}^{n+1}(X(\omega_1)_{X(K_i)}): \text{the coordinates of } x \text{ are equal}\}$ is a discrete closed and uncountable subset of $(X_n)^{n+1}$, we infer that $(X_n)^{n+1}$ is not Lindelöf.

In order to prove that $Y \times (X_n)^n$ is Lindelöf for every hereditarily Lindelöf space Y we shall need

Lemma 1. If S is a stationary subset of ω_1 then $Y \times (X(S))^n$ is Lindelöf for every hereditarily Lindelöf space Y.

Proof. Let Y be a hereditarily Lindelöf space and \mathcal{U} an open cover of $Y \times (X(S))^n$. If $x = x_\alpha \in Z_\alpha$, where $a \in A_\alpha$, $x_\alpha(\alpha) \in B \in \mathcal{B}$, and $\alpha < \lambda$, then put

$$F(x, B, \lambda) = \left(\prod_{\beta < \omega_1} F_\beta \right) \cap X(\omega_1),$$

where

$$F_\beta = \begin{cases} \{x(\beta)\} & \text{if } \beta \leq \alpha, \\ B & \text{if } \beta = \lambda, \\ Q & \text{otherwise.} \end{cases}$$

For $x = (x_1, \ldots, x_n) \in (X(S))^n$ and $\prod_{i=1}^{n} B_i \in (\mathcal{B})^n$, where $x_i \in Z_{a(x_i)}$ and $x_i(\alpha(x_i)) \in B_i$ for all $i \leq n$ put $A(x, \prod_{i=1}^{n} B_i) = \{y \in Y: \exists \text{ open } H_y, \sup\{\alpha(x_i): i \leq n\} < \lambda(y) < \omega_1, \text{ and } U \in \mathcal{U} \text{ such that } y \in H_y \text{ and } H_y \times \prod_{i=1}^{n}(F(x_i, B_i, \lambda(y))) \subset U\}.$

We can assume, without loss of generality, that $\lambda(y)$ for $y \in A(x, \prod_{i=1}^{n} B_i)$ is as small as possible. Since $\{y \in A(x, \prod_{i=1}^{n} B_i): \lambda(y) \leq \beta\}$ is open for all $\beta < \omega_1$ and $A(x, \prod_{i=1}^{n} B_i)$ is Lindelöf as a subspace of Y, we infer that if
A(x, \prod_{i=1}^{n} B_i) \neq \emptyset \text{ then } \sup \{\lambda(y) : y \in A(x, \prod_{i=1}^{n} B_i)\} \text{ is less than } \omega_1. \text{ Put }
\lambda \left(x, \prod_{i=1}^{n} B_i \right) = \begin{cases} \sup \{\lambda(y) : y \in A(x, \prod_{i=1}^{n} B_i)\} & \text{if } A(x, \prod_{i=1}^{n} B_i) \neq \emptyset, \\
0 & \text{otherwise.} \end{cases}

Using again the Lindelöf property of A(x, \prod_{i=1}^{n} B_i) we can find \{y_j : j \in N\} \subset A(x, \prod_{i=1}^{n} B_i) \text{ such that } \bigcup\{H_{y_j} : j \in N\} = A(x, \prod_{i=1}^{n} B_i), \text{ where } H_{y_i} \text{ was defined in connection with } A(x, \prod_{i=1}^{n} B_i).

Let C be a subset of all countable ordinal numbers satisfying the following conditions:

(a) If \(\alpha \in C \) then there is a sequence \((\alpha_n)_{n=1}^{\infty} \) in \(S \) converging to \(\alpha \); we do not require that \(\alpha \in S \).

(b) If \(\alpha \in C \) then for all \((\beta_1, \ldots, \beta_n) \in (S \cap \alpha)^n \), \(x = (x_1, \ldots, x_n) \in \prod_{i=1}^{n} Z_{\beta_i} \) and \(\prod_{i=1}^{n} B_i \in (\mathcal{B})^n \) where \((x_i(\beta_i))_{i=1}^{n} \in \prod_{i=1}^{n} B_i \), \(\lambda(x, \prod_{i=1}^{n} B_i) < \alpha \).

In order to continue the proof of Lemma 1 we need

Claim 1. C is closed and unbounded in \(\omega_1 \).

Proof. Observe that \(C \) is closed. Hence the proof will be finished if we show that \(C \) is unbounded. Fix \(\beta < \omega_1 \). There is \(\beta_0 \in S \setminus \beta \). Put

\[\beta'_1 = \sup \left\{ \lambda \left(x, \prod_{i=1}^{n} B_i \right) : x = (x_i)_{i=1}^{n} \in \left(\bigcup \{Z_\alpha : \alpha \in S \cap (\beta_0 + 1)\} \right)^n, \prod_{i=1}^{n} B_i \in \prod_{i=1}^{n} \mathcal{B}_{X_i(\alpha(x_i))} \right\} \]

and choose \(\beta_1 \in S \setminus \beta'_1 \). If \(\beta'_j \) is defined then put

\[\beta'_j+1 = \sup \left\{ \lambda \left(x, \prod_{i=1}^{n} B_i \right) : x = (x_i)_{i=1}^{n} \in \left(\bigcup \{Z_\alpha : \alpha \in S \cap (\beta_j + 1)\} \right)^n, \prod_{i=1}^{n} B_i \in \prod_{i=1}^{n} \mathcal{B}_{X_i(\alpha(x_i))} \right\} \]

and choose \(\beta_{j+1} \in S \setminus \beta'_j+1 \). Then \(\gamma = \sup \{\beta_j : j \in N\} \in C \).

Since \(S \) is a stationary subset in \(\omega_1 \) and \(C \) is closed and unbounded in \(\omega_1 \), there is \(\alpha \in S \cap C \). Put

\[\mathcal{D} = \left\{ H_{y_j} \times \prod_{i=1}^{n} F(x_j, B_j, \lambda(y_j)) : y_i \in A \left(x, \prod_{j=1}^{n} B_j \right), i \in N, \prod_{j=1}^{n} B_j \in \prod_{j=1}^{n} \mathcal{B}_{X_j(\alpha(x_j))}, \text{ and } x = (x_1, \ldots, x_n) \in \left(\bigcup \{Z_\gamma : \gamma \in S \cap \alpha\} \right)^n. \right\} \]

Observe that \(\mathcal{D} \) is a countable family that refines \(\mathcal{U} \). In order to finish the proof of Lemma 1 it is enough to show that

Claim 2. \(\bigcup \mathcal{D} = Y \times (X(S))^n \).

Proof. Let \((y, x)\) be an arbitrary point of \(Y \times (X(S))^n \). We shall consider two cases:
Case 1. \(x \in \left(\bigcup \{ Z_\gamma : \gamma \in S \cap (\alpha + 1) \} \right)^n \).

Case 2. Case 1 does not hold.

Proof of Case 1. There are an open subset \(y \in H \) of \(Y \), \(U \in \mathcal{Z} \), finite subsets \(T_i \) of \(\omega_1 \), and \(B_\gamma \in \mathcal{B} \) for all \(\gamma \in T_i \) and \(i \leq n \) such that
\[
(y, x) \in H \times \prod_{i=1}^{n} \left(P_{T_i}^{-1} \left(\prod_{\gamma \in T_i} B_\gamma \right) \right) \cap (X(S))^n \subset U.
\]

Put \(T_i = T_{i,1} \cup T_{i,2} \), where \(T_{i,1} = T_i \cap \alpha(x_i) \) and \(T_{i,2} = T_i \setminus T_{i,1} \) for all \(i \leq n \). Since the coordinates of \(x_i \) for \(\gamma \geq \alpha(x_i) \) are the same, we can assume, without loss of generality, that \(T_{i,2} \) is not empty and that there is \(B_i \in \mathcal{B} \) such that \(B_\gamma = B_i \) for all \(\gamma \in T_{i,2} \) and \(i \leq n \).

The sequence \((x_i(\gamma))_{\gamma < \alpha(x_i)} \) converges to \(x_i(\alpha(x_i)) \) so there is \(\sup T_{i,1} < \gamma_i \leq \alpha(x_i) \) such that \(\gamma_i \in S \cap \alpha \) and \(x_i(\gamma_i) \in B_i \) for all \(i \leq n \). If \(\lambda_i = \sup T_{i,2} \), \(x_i = x_{\lambda_i} \), and \(\lambda = \sup \{ \lambda_i : i = 1, 2, \ldots, n \} \) then \((y, x) \in H \times \prod_{i=1}^{n} F(x_i, B_i, \lambda) \). Since elements of \(X(S) \) are increasing sequences and \(B_i \) are intervals for all \(i \leq n \), we infer that
\[
(4) \quad (y, x) \in H \times \prod_{i=1}^{n} \left(p_{T_i}^{-1} \left(\prod_{\gamma \in T_i} B_\gamma \right) \right) \cap (X(S))^n \subset U.
\]

From the last fact it follows that
\[
(5) \quad y \in A \left((x_{\lambda_i})_{\gamma_i}, \ldots, (x_{\lambda_i})_{\gamma_n}, \prod_{i=1}^{n} B_i \right).
\]

Observe that since \(\gamma_i < \alpha \) for all \(i \leq n \), we have
\[
(6) \quad (x_{\lambda_i})_{\gamma_i}, \ldots, (x_{\lambda_i})_{\gamma_n} \in \left(\bigcup \{ Z_\gamma : \gamma \in S \cap \alpha \} \right)^n.
\]

From (5) it follows that there is
\[
y_k \in A \left((x_{\lambda_i})_{\gamma_i}, \ldots, (x_{\lambda_i})_{\gamma_n}, \prod_{i=1}^{n} B_i \right)
\]
such that
\[
(7) \quad (y, (x_{\lambda_i})_{\gamma_i}, \ldots, (x_{\lambda_i})_{\gamma_n}) \in H_{y_k} \times \prod_{i=1}^{n} F(x_{\lambda_i}, B_i, \lambda(y_k)).
\]

Since \(x_i(\gamma_i) = x_{\lambda_i}(\gamma_i) \) and for all \(\gamma_i < \gamma < \omega_1 \), \(x_i(\gamma) \in B_i \) and \(i \leq n \), we infer by (7) that \((y, x) \in H_{y_k} \times \prod_{i=1}^{n} F(x_{\lambda_i}, B_i, \lambda(y_k)) \). This completes the proof of Case 1.

Proof of Case 2. Let use assume that \(x = (x_1, \ldots, x_n) \) is an arbitrary point of \((X(S))^n \) such that \(x_i = x_{\alpha_i} \). Then let \(z = (z_1, \ldots, z_n) \) be such that
\[
(z_i) = \begin{cases}
 x_i & \text{if } x_i \in U \{ Z_\gamma : \gamma \in S \cap (\alpha + 1) \}, \\
 x_{\alpha_i} & \text{otherwise}.
\end{cases}
\]
Then from Case 1 it follows that there is \(D = D_1 \times D_2 \in \mathcal{D} \) containing \((y, z)\) where \(D_1 \subset Y, \ D_2 = \prod_{i=1}^n D_{2,i} \), and \(D_{2,i} \subset X(S) \) for all \(i \leq n \). Since \(\alpha \in C \), we infer that

\[
P^{-1}_\alpha P_\alpha(D_{2,i}) = D_{2,i} \quad \text{for all } i \leq n.
\]

Since \(z_i|\alpha = x_i \) for all \(i \leq n \), we conclude, applying (8), that \((y, x) \in D\). This completes the proof of Lemma 1.

Now we are in a position to prove

Lemma 2. If \(S \) is a stationary subset of \(\omega_1 \) then for every hereditarily Lindelöf space \(Y \) the product \(Y \times (X(\omega_1)_{X(S)})^n \) is Lindelöf.

Proof. Suppose that \(Y \) is a hereditarily Lindelöf space. We shall prove Lemma 3 by induction with respect to \(n \). In order to simplify the induction we shall assume that \((X(\omega_1)_{X(S)})^0\) is a one point set. If \(n = 0 \) then there is nothing to prove. Let us suppose that \(Y \times (X(\omega_1)_{X(S)})^n \) is Lindelöf and that \(\mathcal{U} \) is an open cover of \(Y \times (X(\omega_1)_{X(S)})^{n+1} \) consisting of the sets of the form \(H \times \prod_{i=1}^{n+1} P^{-1}_{\gamma_i}(\prod_{\gamma \in \gamma_i} B_\gamma) \cap (X(\omega_1))^{n+1} \) where \(B_\gamma \in \mathcal{B} \) for all \(\gamma \in T_i \) and \(T_i \) is a finite subset of \(\omega_1 \) for \(i \leq n + 1 \). Then by Lemma 1 there is a countable subfamily \(\mathcal{U}' \) of \(\mathcal{U} \) such that \(Y \times (X(S))^{n+1} \subset \bigcup \mathcal{U}' \). Since \(\mathcal{U}' \) is countable, there is \(\alpha < \omega_1 \) such that

\[
\text{if } U = U_1 \times \prod_{i=1}^{n+1} U_{2,i} \in \mathcal{U}', \quad \text{where } U_1 \subset Y \text{ and } U_{2,i} \subset X(\omega_1)
\]

for all \(i \leq n + 1 \), then \(P^{-1}_\alpha P_\alpha(U_{2,i}) = U_{2,i} \).

Observe that from (9) it follows that

\[
\text{if } y \in Y \text{ and } x = (x_1, \ldots, x_{n+1}) \in \left(\bigcup \{Z_\gamma : \gamma \in \omega_1 \setminus \alpha \} \right)^{n+1},
\]

then \((y, x) \in \bigcup \mathcal{U}'\).

Hence

\[
Y \times (X(\omega_1)_{X(S)})^{n+1} \setminus \bigcup \mathcal{U}' \subset \bigcup_{i=1}^{n+1} E_i
\]

where

\[
E_i = \{ (y, (x_1, \ldots, x_{n+1})) \in Y \times (X(\omega_1)_{X(S)})^{n+1} : x_i \in \bigcup \{Z_\gamma : \gamma \leq \alpha \} \}.
\]

The space \(E_i \) is a countable union of subsets that are Lindelöf by the inductive assumption. We conclude that \(\mathcal{U}' \) has a countable subcover. This completes the proof of Lemma 2.

To finish the proof of the fact that \(Y \times (X_n)^n \) is Lindelöf for every hereditarily Lindelöf space \(Y \) it is sufficient to note that \((X_n)^n\) is a finite sum of elements each of which is a continuous image of a space of the form \((X(\omega_1)_{X(S)})^n\), where \(S \) is a stationary subset of \(\omega_1 \) and to apply Lemma 2.

Remark 1. R. Pol pointed out to me that one can also apply similar technique to the topology defined by G. Kurepa on an Aronszajn tree (see [T]) in order to obtain another example of the kind described in this paper.

Remark 2. Using the pressing-down Lemma one can show that the product \((X_n)^{n+1}\) is not normal for all \(n \in \mathbb{N} \).

[A6] _____, On the class of all spaces of weight not greater than ω_1 whose Cartesian product with every Lindelöf space is Lindelöf, Fund. Math. 129 (1988), 133–140.

