Publications Meetings The Profession Membership Programs Math Samplings Policy & Advocacy In the News About the AMS

Remote Access
Green Open Access
Proceedings of the American Mathematical Society
Proceedings of the American Mathematical Society
ISSN 1088-6826(online) ISSN 0002-9939(print)


Riesz decomposition property implies asymptotic periodicity of positive and constrictive operators

Author: Wojciech Bartoszek
Journal: Proc. Amer. Math. Soc. 116 (1992), 101-111
MSC: Primary 47B65; Secondary 46B40, 47A35, 47B60
MathSciNet review: 1123648
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Consider a linear and positive operator $ {\mathbf{T}}$ acting on an ordered, $ F$-normed linear space $ {\mathbf{X}}$. Assume that there exists an open neighborhood $ {\mathbf{U}} \ni {\mathbf{0}}$ such that the trajectory $ \left\{ {{{\mathbf{T}}^n}({\mathbf{x}})} \right\}$ is attracted to a compact set $ {{\mathbf{F}}_{\mathbf{U}}}$ whenever $ {\mathbf{x}}$ is taken from $ {\mathbf{U}}$ and that the positive cone $ {{\mathbf{X}}_ + }$ is closed, proper, and reproducing. It is shown that if $ ({\mathbf{X}},{{\mathbf{X}}_ + })$ has the Riesz Decomposition Property then $ {\mathbf{T}}$ has asymptotically periodic iterates.

References [Enhancements On Off] (What's this?)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 47B65, 46B40, 47A35, 47B60

Retrieve articles in all journals with MSC: 47B65, 46B40, 47A35, 47B60

Additional Information

PII: S 0002-9939(1992)1123648-3
Keywords: Asymptotic periodicity, positive operator, Riesz Decomposition Property
Article copyright: © Copyright 1992 American Mathematical Society

Comments: Email Webmaster

© Copyright , American Mathematical Society
Contact Us · Sitemap · Privacy Statement

Connect with us Facebook Twitter Google+ LinkedIn Instagram RSS feeds Blogs YouTube Podcasts Wikipedia