Canceling branch points on projections of surfaces in space
Authors:
J. Scott Carter and Masahico Saito
Journal:
Proc. Amer. Math. Soc. 116 (1992), 229237
MSC:
Primary 57Q35; Secondary 57Q45
MathSciNet review:
1126191
Fulltext PDF Free Access
Abstract 
References 
Similar Articles 
Additional Information
Abstract: A surface embedded in space projects to a generic map in space that may have branch pointseach contributing to the normal Euler class of the surface. The sign depends on crossing information near the branch point. A pair of oppositely signed branch points are geometrically canceled by an isotopy of the surface in space. In particular, any orientable manifold is isotopic to one that projects without branch points. This last result was originally obtained by Giller. Our methods apply to give a proof of Whitney's theorem.
 [1]
Thomas
F. Banchoff, Double tangency theorems for pairs of
submanifolds, Geometry Symposium, Utrecht 1980 (Utrecht, 1980)
Lecture Notes in Math., vol. 894, Springer, Berlin, 1981,
pp. 26–48. MR 655418
(83h:53005)
 [2]
Thomas
F. Banchoff, Normal curvatures and Euler classes
for polyhedral surfaces in 4space, Proc. Amer.
Math. Soc. 92 (1984), no. 4, 593–596. MR 760950
(86c:57019), http://dx.doi.org/10.1090/S00029939198407609504
 [3]
, The normal Euler class of a polyhedral surface in space, unpublished notes and letters.
 [4]
T. F. Banchoff and Ockle Johnson (to appear).
 [5]
Sylvain
E. Cappell and Julius
L. Shaneson, An introduction to embeddings, immersions and
singularities in codimension two, Algebraic and geometric topology
(Proc. Sympos. Pure Math., Stanford Univ., Stanford, Calif., 1976), Part 2,
Proc. Sympos. Pure Math., XXXII, Amer. Math. Soc., Providence, R.I., 1978,
pp. 129–149. MR 520529
(80e:57013)
 [6]
Cole
A. Giller, Towards a classical knot theory for surfaces in
𝑅⁴, Illinois J. Math. 26 (1982),
no. 4, 591–631. MR 674227
(84c:57011)
 [7]
Seiichi
Kamada, Nonorientable surfaces in 4space, Osaka J. Math.
26 (1989), no. 2, 367–385. MR 1017592
(91g:57022)
 [8]
Dennis
Roseman, Projections of codimension two embeddings, Knots in
Hellas ’98 (Delphi), Ser. Knots Everything, vol. 24, World Sci.
Publ., River Edge, NJ, 2000, pp. 380–410. MR 1865719
(2002j:57042), http://dx.doi.org/10.1142/9789812792679_0024
 [9]
Reidemeistertype moves for surfaces in four dimensional space, preprint.
 [10]
Bruce
Trace, A general position theorem for surfaces in Euclidean
4space, Combinatorial methods in topology and algebraic geometry
(Rochester, N.Y., 1982), Contemp. Math., vol. 44, Amer. Math. Soc.,
Providence, RI, 1985, pp. 123–137. MR 813108
(87f:57005), http://dx.doi.org/10.1090/conm/044/813108
 [11]
Hassler
Whitney, On the topology of differentiable manifolds, Lectures
in Topology, University of Michigan Press, Ann Arbor, Mich., 1941,
pp. 101–141. MR 0005300
(3,133a)
 [1]
 T. F. Banchoff, Double tangency theorems for pairs of submanifolds, Geometry Symposium Utrecht 1980 (Looijenga, Seirsma, and Takens, eds.), Lecture Notes in Math., vol. 894, SpringerVerlag, Berlin and New York, 1981, pp. 2648. MR 655418 (83h:53005)
 [2]
 , Normal curvature and Euler classes for polyhedral surfaces in space, Proc. Amer. Math. Soc. 92 (1984), 593596. MR 760950 (86c:57019)
 [3]
 , The normal Euler class of a polyhedral surface in space, unpublished notes and letters.
 [4]
 T. F. Banchoff and Ockle Johnson (to appear).
 [5]
 S. E. Cappell and J. L. Shaneson, An introduction to embeddings, immersions and singularities in codimension two, Proc. Sympos. Pure Math., vol. 32, Amer. Math. Soc., Providence, RI, 1978. MR 520529 (80e:57013)
 [6]
 Cole Giller, Towards a classical knot theory for surfaces in , Illinois J. Math. 26 (1982), 591631. MR 674227 (84c:57011)
 [7]
 Seiichi Kamada, Nonorientable surfaces in space, Osaka J. Math. 26 (1989) 367385. MR 1017592 (91g:57022)
 [8]
 Dennis Roseman, Projections of codimension two embeddings, preprint. MR 1865719 (2002j:57042)
 [9]
 Reidemeistertype moves for surfaces in four dimensional space, preprint.
 [10]
 Bruce Trace, A general postion theorem for surfaces in space, Comtemp. Math., vol. 44, Amer. Math. Soc., Providence, RI, 1985, pp. 123137. MR 813108 (87f:57005)
 [11]
 H. Whitney, On the topology of differentiate manifolds, Lectures in Topology (Raymond L. Wilder and William L. Ayres, eds.), Univ. of Michigan Press, Ann Arbor, 1941. MR 0005300 (3:133a)
Similar Articles
Retrieve articles in Proceedings of the American Mathematical Society
with MSC:
57Q35,
57Q45
Retrieve articles in all journals
with MSC:
57Q35,
57Q45
Additional Information
DOI:
http://dx.doi.org/10.1090/S00029939199211261910
PII:
S 00029939(1992)11261910
Keywords:
Embedded surfaces in space,
projections,
branch points,
normal Euler number
Article copyright:
© Copyright 1992 American Mathematical Society
