ATTRACTORS OF ITERATED FUNCTION SYSTEMS

P. F. DUVALL, JR. AND L. S. HUSCH

(Communicated by James E. West)

Abstract. In this paper, the question of which compact metric spaces can be attractors of hyperbolic iterated function systems on Euclidean space is studied. It is shown that given any finite-dimensional compact metric X, there is a Cantor set C such that the disjoint union of C and X is an attractor. In the process, it is proved that every such X is the Lipschitz image of a Cantor set.

1. Introduction

If X is a complete metric space and $F = \{f_1, f_2, \ldots, f_k\}$ is a collection of contraction mappings of X to itself, then F is said to be a (hyperbolic) Iterated Function System. It is well known [4] that for such an F there is a unique compact set A such that $A = \bigcup_{i=1}^{k} f_i(A)$. A is called the attractor for F. In this paper, we are concerned with the question of which compact sets in Euclidean space can be realized as the attractors of some IFS. Williams [6] initially investigated the topological structure of attractors of IFS’s. Hata [3] generalized Williams’ work and showed that not every compactum can be realized as the attractor of an IFS, since, for example, a connected attractor must be locally connected. Hata posed the question whether every finite-dimensional locally connected continuum is the attractor of some IFS. Barnsley [1] showed to what extent every compactum can be approximated by an attractor of an IFS. As a special case, we note that it is not difficult to show that every compact subpolyhedron in \mathbb{R}^d is an attractor.

We show (Theorem 4.1) that for each $n > 0$ there is a Cantor set $C^n \subset \mathbb{R}^{2n}$ with the property that if X is any compact set in \mathbb{R}^n, the set

$$C^n \times \{0\} \cup \{0\} \times X \subset \mathbb{R}^{3n}$$

is the attractor of an IFS. It follows that every compact, finite dimensional metric space that contains a closed and open Cantor subset can be embedded in some Euclidean space as an attractor.
Most of our notation is standard, although we shall use $\| \cdot \|$ to denote the sum norm on \mathbb{R}^n. That is, if $x = (x_1, x_2, \ldots, x_n)$ then $\|x\| = |x_1| + |x_2| + \cdots + |x_n|$.

2. Lipschitz mappings of Cantor sets onto compacta

A classical theorem of topology states that every compact metric space is the continuous image of the Cantor set. In this section, we construct, for each $n > 0$, a Cantor set V^n with the property that for every compactum $X \subset \mathbb{R}^n$ there is a Lipschitz mapping of V^n onto X.

To begin, fix an $n \geq 1$ and let B be the unit cube in \mathbb{R}^n spanned by the standard basis vectors. Subdivide B into cubes B_i, $i \in \Gamma$, where $\Gamma = \{0, 1, \ldots, 2^n - 1\}$ and $B_i = \prod_{j=0}^{n} [e_j, 1/2 + e_j]$ with e_j being one half the jth binary digit of i. Subdivide the B_i's in a similar manner and continue the process so that at the kth stage, B is the union of 2^{kn} cubes $B_{i_1 i_2 \cdots i_k}$. For each $k \geq 1$, give the space of k-tuples of integers the discrete topology, let

$$V_k = \bigcup_{i_1, i_2, \ldots, i_k \in \Gamma} B_{i_1 i_2 \cdots i_k} \times (i_1, i_2, \ldots, i_k)$$

and define $p_k : V_{k+1} \to V_k$ by $p_k(x, i_1, i_2, \ldots, i_{k+1}) = (x, i_1, i_2, \ldots, i_k)$. If $\bar{i} = \{i_k\}$ is a sequence of integers with $i_k \in \Gamma$, let

$$x(\bar{i}) = \bigcap_{k=1}^{\infty} B_{i_1 i_2 \cdots i_k}.$$

In the next section, we will need the following observation, whose proof is left to the reader.

Proposition 2.1. If $i_k = x_k + x_k 2 + \cdots + x_k 2^{n-1}$, with $x_k \in \{0, 1\}$, then the mth component of $x(\bar{i})$ has the base 2 expansion $x_{1m} x_{2m} x_{3m} \cdots$.

Let V^n be the inverse limit of the sequence

$$V_1 \xrightarrow{p_1} V_2 \xrightarrow{p_2} \cdots.$$

Note that we may view a point in V^n as a pair (x, \bar{i}), where \bar{i} is a sequence of integers from Γ and $x = x(\bar{i})$. Define a metric ρ on V^n by

$$\rho((x, \bar{i}), (y, \bar{j})) = \|x - y\| + 1/2^k,$$

where $\| \cdot \|$ is the sum norm described in the introduction and $k + 1$ is the first index in which \bar{i} and \bar{j} disagree (note that if $\bar{i} = \bar{j}$ then $x = y$).

Proposition 2.2. V^n is a Cantor set and ρ is a metric consistent with the inverse limit topology on V^n.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use
Proof. Recall that if \(\{X_k\} \) is a sequence of metric spaces with bounded metrics \(d_k \), then

\[
d(\{x_k\}, \{y_k\}) = \sum_{k=1}^{\infty} \frac{d_k(x_k, y_k)}{2^k}
\]

is a metric on the product of the \(X_k \)'s that induces the product topology. Let \(d_k \) be the metric on \(V_k \) given by

\[
d_k((x, i_1, i_2, \ldots, i_k), (y, j_1, j_2, \ldots, j_k)) = \|x - y\| + \varepsilon;
\]

where \(\varepsilon = 0 \) if \((i_1, i_2, \ldots, i_k) = (j_1, j_2, \ldots, j_k) \), 1 otherwise. Then, if \((x, \vec{i}) \) and \((y, \vec{j}) \) are in \(V^n \) and \(k + 1 \) is the first index for which \(\vec{i} \) and \(\vec{j} \) disagree, the construction of \(d \) above gives

\[
d((x, \vec{i}), (y, \vec{j})) = \sum_{m=1}^{\infty} \frac{\|x - y\|}{2^m} + \sum_{m=k+1}^{\infty} \frac{1}{2^m} = \|x - y\| + \frac{1}{2^k} = \rho((x, \vec{i}), (y, \vec{j})).
\]

Thus \(\rho \) agrees with the product metric. To see that \(V^n \) is a Cantor set, note that the map \((x, \vec{i}) \to \vec{i} \) is a homeomorphism of \(V^n \) onto the space of sequences of integers from \(\Gamma \). \(\square \)

Now let \(X \) be a compact subset of \(B \), and define a mapping \(\phi : V^n \to X \) as follows. For each \(k \)-tuple \((i_1, i_2, \ldots, i_k) \) such that \(B_{i_1, i_2, \ldots, i_k} \) intersects \(X \), choose a point \(x_{i_1, i_2, \ldots, i_k} \in B_{i_1, i_2, \ldots, i_k} \cap X \). Given \((x, \vec{i}) \in V^n \), define

\[
\phi(x, \vec{i}) = \begin{cases} x_{i_1, i_2, \ldots, i_k} & \text{if } x \notin X \text{ and } k \text{ is the last index with } X \cap B_{i_1, i_2, \ldots, i_k} \neq \emptyset, \\ x & \text{if } x \in X. \end{cases}
\]

Theorem 2.1. \(\phi \) is a Lipschitz map of \(V^n \) onto \(X \).

Proof. Given \(a = (x, \vec{i}) \), \(b = (y, \vec{j}) \in V^n \), there are three cases to consider.

Case 1. Both \(x \) and \(y \) are in \(X \). In this case,

\[
\|\phi(a) - \phi(b)\| = \|x - y\| \leq \rho(a, b).
\]

Case 2. \(x \in X \), but \(y \notin X \). Let \(k + 1 \) be the first index in which \(\vec{i} \) and \(\vec{j} \) disagree, and let \(\phi(b) = x_{j_1, j_2, \ldots, j_l} \). Then \(k \leq l \) and

\[
\|y - x_{j_1, j_2, \ldots, j_l}\| \leq n/2^l \leq n/2^k
\]

since both \(y \) and \(x_{j_1, j_2, \ldots, j_l} \) are in \(B_{j_1, j_2, \ldots, j_l} \). We have

\[
\|\phi(a) - \phi(b)\| = \|x - x_{i_1, i_2, \ldots, i_l}\| \leq \|x - y\| + \|y - x_{j_1, j_2, \ldots, j_l}\| \
\leq \|x - y\| + n/2^k \leq \rho(a, b).
\]

Case 3. Neither \(x \) nor \(y \) are in \(X \). Let \(\phi(a) = x_{i_1, i_2, \ldots, i_m} \), \(\phi(b) = x_{j_1, j_2, \ldots, j_m} \), and let \(k + 1 \) be the first index in which \(\vec{i} \) and \(\vec{j} \) disagree. We may assume that \(l \leq m \), and we would like to have \(k \leq l \). If \(m \leq k \), then \(\phi(a) = \phi(b) \).
and there is nothing to prove. By the definition of ϕ, the case $l < k < m$ leads to a contradiction, so we assume $k \leq l$. Then

$$\| \phi(a) - \phi(b) \| = \| x_i x_j \cdots x_m - x_i x_j \cdots x_m \|$$

$$\leq \| x - y \| + \| x - x_i x_j \cdots x_m \| + \| y - x_i x_j \cdots x_m \|$$

$$\leq \| x - y \| + 2n/2^k \leq 2n \rho(a, b).$$

Thus ϕ is a Lipschitz map with Lipschitz constant at most $2n$. \square

Since every compact set in \mathbb{R}^n can be moved into B by similarity transformations, we have

Corollary 2.1. If X is any compact set in \mathbb{R}^n, there is a Lipschitz map of V^n onto X.

3. Standard Cantor sets

Let C^1 be the set of points in \mathbb{R}^2 of the form (x, y), where $x, y \in [0, 1]$ have base 2 expansions of the form $x = .x_1 x_2 x_3 \cdots$ and $y = .y_1 y_2 y_3 \cdots$, with $x_i = 0$ for i even and $y_i = 0$ for i odd. Define contractions h_0 and h_1 on \mathbb{R}^2 by

$$h_0(x, y) = \left(\frac{y}{2}, \frac{x}{2}\right) \quad \text{and} \quad h_1(x, y) = \left(\frac{y}{2} + \frac{1}{2}, \frac{x}{2}\right).$$

Proposition 3.1. C^1 is a Cantor set and is the attractor for the IFS $F^1 = \{h_0, h_1\}$.

Proof. It is easy to check that $h_0(C^1)$ and $h_1(C^1)$ are disjoint and that their union is C^1. Thus C^1 is the attractor and the disjointness implies that it is a Cantor set [3, Theorem 4.4]. \square

If $F = \{f_1, f_2, \ldots, f_k\}$ and $G = \{g_1, g_2, \ldots, g_l\}$ are IFSs on the complete metric spaces X and Y with attractors A and B, respectively, define the IFS $F \times G$ on $X \times Y$ to be the set of all products $f_i \times g_j$.

The reader can easily verify the following proposition.

Proposition 3.2. The attractor of $F \times G$ is $X \times Y$.

It follows that for each $n > 1$ the n-fold product $C^n = C^1 \times C^1 \times \cdots \times C^1$ is a Cantor set in \mathbb{R}^{2n} that is the attractor of the IFS $F^n = F^1 \times F^1 \times \cdots \times F^1$.

We note in passing that since F^n consists of 2^n similitudes with similarity constant $\frac{1}{2}$, the Hausdorff dimension of C^n is n [2].

In the previous section, we showed that each compactum in a finite-dimensional Euclidean space is the Lipschitz image of an abstractly defined Cantor set. The purpose of the present construction is to be able to replace V^n by the more geometrically appealing C^n. Again, we need some preliminary notation. If $u \in C^n$, we can represent u as a $2n$-tuple $u = (x_1, x_2, x_3, \ldots, x_n, y_n)$ where each x^m has the binary expansion $x^m = .x_1^m x_2^m \cdots x^m_n$ and $x_k^m = 0$ if k is even and the y^m have similar expansions with $y_k^m = 0$ for k odd. Then we
can define a mapping \(\psi: C^n \to V^n \) by \(\psi(u) = (x(\bar{i}), \bar{v}) \), where

\[
i_k = \sum_{m=1}^{n} \frac{x_k^m + y_k^m}{2^{m-1}}.
\]

Theorem 3.1. The map \(\psi: C^n \to V^n \) is a Lipschitz equivalence.

Proof. It follows from the uniqueness of representation of integers and the special properties of the points in \(C^n \) that \(\psi \) is one-to-one and onto. Let \(u \) be as above, let \(v = (w^1, z^1, w^2, z^2, \ldots, w^n, z^n) \) be a second point, and let \(\psi(u) = (a, \bar{x}), \psi(v) = (b, \bar{y}) \). By Proposition 2.1 the \(m \)th coordinate of \(a \) is \(x^m + y^m \) and the \(m \)th coordinate of \(b \) is \(w^m + z^m \), so we have

\[
\|a - b\| = \sum_{m=1}^{n} |x^m + y^m - w^m - z^m| \\
\leq \sum_{m=1}^{n} |x^m - w^m| + |y^m - z^m| = \|u - v\|.
\]

Suppose that \(k + 1 \) is the first index in which \(\bar{x} \) and \(\bar{y} \) disagree. Since \(a \) and \(b \) must have some coordinates that disagree in the \(k + 1 \)st position of their binary expansions, \(\|a - b\| \geq 1/2^{k+1} \). Therefore,

\[
\rho(\psi(u), \psi(v)) = \|a - b\| + \frac{1}{2^k} \leq 3\|a - b\| \leq 3\|u - v\|.
\]

On the other hand,

\[
\|u - v\| = \sum_{m=1}^{n} |x^m - w^m| + |y^m - z^m| \leq \frac{2n}{2^k},
\]

since \(x^m, w^m \) and \(y^m, z^m \) agree in at least their first \(k \) places. Therefore

\[
\|u - v\| \leq 2n\|a - b\| + \frac{2n}{2^k} = 2n\rho(\psi(u), \psi(v)).
\]

Corollary 3.1. If \(X \) is a compact set in \(R^n \), there is a Lipschitz map of \(C^n \) onto \(X \).

4. **Constructing IFSs**

Recall the contractions \(h_0 \) and \(h_1 \) on \(R^2 \) constructed in §3. For an \(n > 1 \) we index the members of the IFS \(F^n \) as follows. For an integer \(i \in \Gamma \), let \(i = \sum_{k=0}^{n-1} x_k 2^k \) be its binary representation, and let \(f_i = h_{x_0} \times h_{x_1} \times \cdots \times h_{x_{n-1}} \).

For \(i_1, i_2, \ldots, i_k \in \Gamma \), let \(f_{i_1 i_2 \cdots i_k} \) be the composition \(f_{i_k} f_{i_{k-1}} \cdots f_{i_1} \). It is easy to see that
Proposition 4.1. Each $f_{i_1 i_2 \ldots i_k}$ is a contraction of \mathbb{R}^{2n} with contractivity constant $1/2^k$ and

$$C^n = \bigcup_{i_1, i_2, \ldots, i_k \in \Gamma} f_{i_1 i_2 \ldots i_k} (C^n)$$

for each k.

Given a compact set $X \subset \mathbb{R}^n$ with $0 \not\in X$, let $C + X$ denote the union

$$C + X = (C^n \times \{0\}) \cup (\{0\} \times X) \subset \mathbb{R}^{3n}.$$

Theorem 4.1. There is an IFS on \mathbb{R}^{3n} whose attractor is $C + X$.

Proof. Write \mathbb{R}^{3n} as $\mathbb{R}^{2n} \times \mathbb{R}^n$ and let $\lambda : C^n \to X$ be a Lipschitz map with Lipschitz constant L. By the “Lipschitz Tietze Theorem” [5], we may assume that λ is defined on all of \mathbb{R}^{2n}. For each $i \in \Gamma$ let \hat{f}_i be defined by

$$\hat{f}_i(x, y) = (f_i(x), 0).$$

Choose a k such that $L/2^k < 1$ and for each k-tuple $i_1, i_2, \ldots, i_k \in \Gamma$, let

$$g_{i_1 i_2 \ldots i_k} (x, y) = (0, \lambda f_{i_1 i_2 \ldots i_k} (x)).$$

Then the collection

$$\{\hat{f}_i | i \in \Gamma\} \cup \{\lambda g_{i_1 i_2 \ldots i_k} | i_1, i_2, \ldots, i_k\}$$

is an IFS whose attractor is $C + X$. □

References

Department of Mathematics, University of North Carolina at Greensboro, Greensboro, North Carolina 27412

E-mail address: duvallp@hamlet.uncg.edu

Department of Mathematics, University of Tennessee, Knoxville, Tennessee 37996

E-mail address: husch@math.utk.edu

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use