Uniqueness of unbounded Loeb measure using Choquet's theorem

Author:
Boško Živaljević

Journal:
Proc. Amer. Math. Soc. **116** (1992), 529-533

MSC:
Primary 28E05; Secondary 03H05

DOI:
https://doi.org/10.1090/S0002-9939-1992-1094509-3

MathSciNet review:
1094509

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Uniqueness of the Carathéodory extension of the standard part map of an internal unbounded measure defined on an internal algebra of subsets of an internal set has been proved by Henson using the notion of a countably determined set. Here we show how Choquet's capacitability theorem can be used in the proof of the same result.

**[BS]**D. W. Bressler and M. Sion,*The current theory of analytic sets*, Canad. J. Math.**16**(1964), 207-230. MR**0163854 (29:1153)****[C]**G. Choquet,*Theory of capacities*, Ann. Inst. Fourier (Grenoble)**5**(1955), 131-295. MR**0080760 (18:295g)****[H1]**C. W. Henson,*Analytic sets, Baire sets and the standard part map*, Canad. J. Math.**31**(1979), 663-672. MR**536371 (80i:28019)****[H2]**-,*Unbounded Loeb measures*, Proc. Amer. Math. Soc.**74**(1979), 143-150. MR**521888 (80b:28011)****[HR]**C. W. Henson and D. Ross,*Analytic mappings on hyperfinite sets*(to appear). MR**1126195 (93g:03055)****[HuLo]**A. E. Hurd and P. A. Loeb,*An introduction to nonstandard real analysis*, Academic Press, New York, 1985. MR**806135 (87d:03184)****[JR]**J. E. Jane and C. A. Rogers,*-analytic sets*, Analytic Sets (C. A. Rogers, ed.), Academic Press, New York, 1980. MR**608794 (82m:03063)****[KKML]**H. J. Keisler, K. Kunen, A. Miller, and S. Leth,*Descriptive set theory over a hyperfinite set*, J. Symbolic Logic**54**(1989), 1167-1180. MR**1026596 (91c:03040)****[Lo]**P. A. Loeb,*Conversion from nonstandard to standard measure spaces and application in probability theory*, Trans. Amer. Math. Soc.**211**(1975), 113-122. MR**0390154 (52:10980)****[R]**D. Ross,*Lifting theorems in nonstandard measure theory*, Proc. Amer. Math. Soc.**109**(1990), 809-822. MR**1019753 (91b:03110)****[Ž1]**B. Živaljević,*Every Borel function is monotone Borel*, Ann. Pure Appl. Logic**54**(1991), 87-99. MR**1130220 (93b:03119)****[Ž2]**-,*Some results about Borel sets in descriptive set theory of hyperfinite sets*, J. Symbolic Logic**55**(1990), 604-614. MR**1056374 (92g:03075)****[Ž3]**-,*-meager sets when the cofinality and the coinitiality of**are uncountable*, J. Symbolic Logic**56**(1991), 906-914. MR**1129155 (92k:03033)**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC:
28E05,
03H05

Retrieve articles in all journals with MSC: 28E05, 03H05

Additional Information

DOI:
https://doi.org/10.1090/S0002-9939-1992-1094509-3

Article copyright:
© Copyright 1992
American Mathematical Society