PROJECTIONS IN KAC-MOODY LIE ALGEBRAS

KAILASH C. MISRA AND MOHAN S. PUTCHA

(Communicated by Maurice Auslander)

Abstract. Let \(g \) be a Kac-Moody Lie algebra and \(\mathcal{B} \) its set of positive Borel subalgebras. If \(b \in \mathcal{B} \) and \(p \) is a parabolic subalgebra, let \(\text{proj}_p(b) = p \cap b + r_n(p) \) where \(r_n(p) \) denotes the nilradical of \(p \). In this paper we consider the idempotent maps \(E_{p,p^-} = \text{proj}_p \circ \text{proj}_{p^-} : \mathcal{B} \to \mathcal{B} \), where \(p \) and \(p^- \) are opposite parabolic subalgebras with \(p \) being of positive type. We consider the semigroup \(M = M(g) \) generated (with respect to composition) by the maps \(E_{p,p^-} \). In particular we show that the maximal subgroups of \(M \) are closely related to proper Levi subgroups of the Kac-Moody group associated with \(g \).

Introduction

Projections in algebraic groups were introduced and used by Tits [6] in his theory of buildings. If \(G \) is a simple algebraic group, \(B \) a Borel subgroup of \(G \), and \(P \) a parabolic subgroup of \(G \), then \(\text{proj}_P(B) = (P \cap B)RU(P) \) where \(RU(P) \) denotes the unipotent radical of \(P \). In this way, we have an idempotent map \(\text{proj}_P : G/B \to G/B \). One of the authors [5] studied the monoid \(M \) (with respect to composition) generated by these projections. In particular, it was shown in [5] that the maximal subgroups of \(M \) are closely related to proper Levi subgroups of \(G \).

In this paper we study projections in a Kac-Moody Lie algebra. Let \(g \) be a Kac-Moody Lie algebra associated to an indecomposable symmetrizable generalized Cartan matrix and let \(G \) be the corresponding Kac-Moody group [2, 3, 4]. Let \(b_+ \) and \(b_- \) denote the standard positive and negative Borel subalgebras of \(g \). It was proved in [4] that any Borel subalgebra of \(g \) is \(\text{Ad} G \)-conjugate to \(b_+ \) or \(b_- \). We say a Borel subalgebra \(b \) of \(g \) is of positive type if it is conjugate to \(b_+ \) and that a parabolic subalgebra \(p \) of \(g \) is of positive type if it contains a Borel subalgebra of positive type. Let \(\mathcal{B} \) (resp. \(\mathcal{P} \)) denote the set of all Borel (resp. parabolic) subalgebras of \(g \) of positive type. The parabolic subalgebra \(p^- \) is said to be an opposite of the parabolic subalgebra \(p \) if \(p \cap p^- \) is a common Levi factor. For \(b \in \mathcal{B} \) and \(p \) any parabolic subalgebra, we define \(\text{proj}_p(b) = p \cap b + r_n(p) \), where \(r_n(p) \) denotes the nilradical of \(p \). In general \(\text{proj}_p(b) \) does not belong to \(\mathcal{B} \) (unless \(p \in \mathcal{P} \)). We consider the idempotent maps \(E_{p,p^-} : \mathcal{B} \to \mathcal{B} \), where \(E_{p,p^-} = \text{proj}_p \circ \text{proj}_{p^-} \) and \(p \in \mathcal{P}, p^- \nexists \mathcal{B} \).
an opposite of \(p \). Let \(M = M(g) \) be the monoid generated by \(E_{p, p^-}, p \in \mathcal{R} \), with respect to composition. Let \(I = p \cap p^- \), \(\text{St}_G(I) = \{ x \in G | \text{Ad} x(l) = I \} \), \(H = \{ x \in \text{St}_G(I) | \text{Ad} x(b) = b, \text{ for all } b \in \mathcal{R}(I) \} \), and \(\tilde{L} = \text{St}_G(I)/H \). In this paper it is shown (Theorem 2.8) that the maximal subgroup of \(M \) with identity element \(E_{p, p^-} \) is isomorphic to \(\tilde{L} \). Since the Dynkin diagram of any Kac-Moody Lie algebra can be extended by a single node, we see that a group closely related to any Kac-Moody group arises as a maximal subgroup of some \(M \).

1. Preliminaries

In this section we will recall some basic definitions and facts about Kac-Moody algebras and groups associated to a symmetrizable generalized Cartan matrix. For more details the reader is referred to [2, 3, 4].

Let \(A = (a_{ij})_{i,j=1}^{n} \) be an \(n \times n \) symmetrizable generalized Cartan matrix, i.e., an integral matrix satisfying \(a_{ii} = 2, a_{ij} \leq 0 \) for \(i \neq j \), \(a_{ij} = 0 \) \(\Leftrightarrow a_{ji} = 0 \), and \(DA \) is symmetric for some nondegenerated diagonal matrix \(D \). We assume for simplicity that \(A \) is indecomposable. Let \(C \) denote the field of complex numbers and \(C^* \) denote the set of nonzero complex numbers. Consider the Kac-Moody algebra \(g = g(A) \) over \(C \) (see [2]) with generators \(e_i, f_i, h_i, i \in I = \{1, 2, \ldots, n\} \).

The Lie algebra \(g \) admits a gradation \(g = \bigoplus_{\alpha \in Q} g_{\alpha} \) by the free abelian group \(Q \) on symbols \(\alpha_i, i \in I \), which is called the root lattice, such that \(h = g_0 = \bigoplus_{i \in I} C h_i, g_{\alpha_i} = C e_i \), and \(g_{-\alpha_i} = C f_i \). Call \(h \) the standard Cartan subalgebra of \(g \). Let \(\Delta = \{ \alpha \in Q | g_\alpha \neq 0, \alpha \neq 0 \} \) be the set of roots of \(g(A) \). Define \(r_i \in \text{Aut}_C(h) i \in I \) by \(r_i(h) = h - \alpha_i(h) h_i \) and take \(S = \{ r_i | i \in I \} \). \(S \) generates the Weyl group \(W \), and \((W, S) \) is a Coxeter system. Let \(\Gamma \) be the Coxeter graph for \(W \). Since \(A \) is indecomposable, \(\Gamma \) is connected. \(W \) preserves the root system \(\Delta \). A real (resp. imaginary) root is an element of \(\Delta^r := \{ w \cdot \alpha_i | w \in W, i \in I \} \) (resp. \(\Delta^i := \Delta \backslash \Delta^r \)). Elements of \(\Delta^+ := Q^+ \cap \Delta \) are called positive roots and \(\Delta^- := \Delta \backslash \Delta^+ \) are called negative roots. Define \(n^\pm = \bigoplus_{\alpha \in \Delta^\pm} g_\alpha \). Then \(g = n^- \oplus h \oplus n^+ \) and \(b^\pm = h \oplus n^\pm \) are the standard Borel subalgebras (positive if '+', negative if '−').

For \(t \in C^* \) and \(u \in C \), define the following elements of \(\text{SL}_2(C) \):

\[
h(t) = \begin{pmatrix} t & 0 \\ 0 & t^{-1} \end{pmatrix}, \quad x(u) = \begin{pmatrix} 1 & u \\ 0 & 1 \end{pmatrix}, \quad y(u) = \begin{pmatrix} 1 & 0 \\ u & 1 \end{pmatrix}.
\]

The following axioms (1.1)–(1.3) determine (uniquely up to isomorphism) a group \(G = G(A) \) and homomorphisms \(\phi_i: \text{SL}_2(C) \to G(A) \) for \(i \in I \) [3]. Here and further on, \(\phi_i(h(t)), \phi_i(x(u)), \) and \(\phi_i(y(u)) \) are denoted by \(h_i(t), \) \(x_i(u), \) and \(y_i(u), \) respectively, for short.

(1.1) There exists a faithful \(G \)-module \((V, \pi)\) over \(C \) such that each \(\text{SL}_2(C) \)-module \((V, \pi \circ \phi_i)\) is a direct sum of rational finite-dimensional submodules.

(1.2) \(h_i(t)x_j(u)h_i(t)^{-1} = x_j(t^{a_{ji}}u) \) and \(h_i(t)y_j(u)h_i(t)^{-1} = y_j(t^{-a_{ji}}u) \) for all \(i, j \in I, t \in C^* \), and \(u \in C \).

(1.3) If a group \(G' \) and homomorphisms \(\phi_i': \text{SL}_2(C) \to G' \), \(i \in I \), satisfy (1.2) and (1.3), then there exists a unique homomorphism \(\psi: G \to G' \) such that \(\phi_i' = \psi \circ \phi_i \) for all \(i \in I \).

Put \(G_i = \phi_i(\text{SL}_2(C)) \), \(i \in I \). It follows from the axioms that the subgroups
$G_i, \ i \in I,$ generate the group G. Put $H_i = \{h_i(t) | t \in \mathbb{C}^*\},$ and let H be the subgroup of G generated by the subgroups H_i. Then H is an abelian subgroup of G. Let N_i be the normalizer of H_i in G_i and let N be the subgroup of G generated by the N_i's. Then H is an abelian normal subgroup of N and the Weyl group W is isomorphic to the quotient group N/H [3, 4].

To the integrable g-module (g, ad) associate the homomorphism $\text{Ad} : G \rightarrow \text{Aut}_\mathbb{C}(g)$ satisfying $\text{Ad}(\exp x) = \exp(\text{ad} x)$ for all $x \in g_\alpha, \ \alpha \in \Delta^\text{re}$. Then the kernel of Ad is the center $C(G)$ of G. For $i \in I$ consider the one-parameter subgroups $U_{\alpha_i} = \{x_i(u) | u \in \mathbb{C}\}, \ U_{-\alpha_i} = \{y_i(u) | u \in \mathbb{C}\}$ of G. For a real root $\alpha = w\alpha_i$, take $n \in N$ such that $w = nH$ and put $U_{\pm \alpha} = nU_{\pm \alpha_i}n^{-1}$. Then $U_\alpha = \exp g_\alpha$ for all $\alpha \in \Delta^\text{re}$ [3]. Let U_+ (resp. U_-) be the subgroup of G generated by the subgroups U_α (resp. $U_{-\alpha}$), $\alpha \in \Delta^+_\text{re}$. Define the standard Borel subgroups $B_{\pm} = HU_{\pm}$. Then we have [3, 4]

(1.4) $G = \bigcup_{w \in W} B_+ w B_+$ (Bruhat decomposition),

(1.5) $G = \bigcup_{w \in W} B_- w B_+$ (Birkhoff decomposition).

The following theorem is known [4, Theorems 2, 3].

Theorem 1.1 [4]. (i) Every Cartan subalgebra of g is $\text{Ad}(G)$-conjugate to h_i.

(ii) Every Borel subalgebra of g is $\text{Ad}(G)$-conjugate to b_+ or to b_-.

(iii) Every Cartan subalgebra of b_+ is $\text{Ad}(U_+)$-conjugate to h_i.

The following is an immediate corollary of Theorem 1.1(ii) and equations (1.4), (1.5).

Corollary 1.2. If p_1, p_2 are any two parabolic subalgebras of g, then $p_1 \cap p_2$ contains a Cartan subalgebra of g. In particular, if b_1 and b_2 are any two Borel subalgebras of g, then $b_1 \cap b_2$ contains a Cartan subalgebra of g.

Let b be any Borel subalgebra and p any parabolic subalgebra of g. Define $B = \{g \in G | (\text{Ad} g)(b) = b\}$ and $P = \{g \in G | (\text{Ad} g)(p) = p\}$. Then B is a Borel subgroup and P is a parabolic subgroup of G. We define B (resp. P) to be the Borel (resp. parabolic) subgroup associated with the Borel (resp. parabolic) subalgebra b (resp. p) of g. A parabolic subgroup P^- is said to be an opposite of the parabolic subgroup P of G if $L = P \cap P^-$ is a reductive group. Then we have a Levi decomposition $P = LU$ where $U = R_u(P)$ is the unipotent radical of P. For any parabolic subalgebra p of g and a Cartan subalgebra c, the Levi factor l of p is the subalgebra spanned by c and all pairs of opposite root spaces with respect to c occurring in p. Then we have the Levi decomposition $p = l \oplus u$ where $u = r_n(p)$ is the nilradical of p. A parabolic subalgebra p^- is said to be an opposite of the parabolic subalgebra p of g if $l = p \cap p^-$ is a Levi factor of p (and p^-).

2. Main section

As in §1, let g and G denote the Kac-Moody algebra and Kac-Moody group, respectively, associated to a symmetrizable indecomposable Cartan matrix A. We say a Borel subalgebra b of g is of positive (resp. negative) type if b is $\text{Ad} G$-conjugate to the standard positive (resp. negative) Borel subalgebra b_+.
A parabolic subalgebra p of g is of positive (resp. negative) type if p contains a Borel subalgebra of positive (resp. negative) type. Let $\mathcal{B} = \mathcal{B}(g)$ denote the set of Borel subalgebras of g of positive type and $\mathcal{P} = \mathcal{P}(g)$ denote the set of parabolic subalgebras of g of positive type. For any subalgebra \mathfrak{k} of g, whenever defined we will write $\mathcal{B}(\mathfrak{k})$ and $\mathcal{P}(\mathfrak{k})$ to denote the set of Borel subalgebras and parabolic subalgebras, respectively, of positive type.

For any Borel subalgebra b and parabolic subalgebra p of g define
\[
\text{proj}_p(b) = p \cap b + r_n(p),
\]
where $r_n(p)$ is the nilradical of p. For $b \in \mathcal{B}$ and $p \in \mathcal{P}$ define
\[
E_{p,p^{-}} = \text{proj}_p \circ \text{proj}_{p^{-}}.
\]
where p^{-} is an opposite of p. Then $E_{p,p^{-}}(b) \in \mathcal{B}$ for all $b \in \mathcal{B}$, $E_{\mathfrak{g},\mathfrak{g}} = 1$, and $E_{p,p^{-}} \circ E_{p,p^{-}} = E_{p,p^{-}}$. Let \mathcal{E} denote the set of idempotent maps $E_{p,p^{-}}$, $p \in \mathcal{P}$. Observe that if $l = p \cap p^{-}$ and $b \in \mathcal{B}$ have a common Cartan subalgebra then $E_{p,p^{-}}(b) = \text{proj}_p(b)$. For a subalgebra $\mathfrak{k} \subseteq g$ and $x \in G$, we will write $x \mathfrak{k}$ to denote $(\text{Ad}x)(\mathfrak{k})$ and $\mathfrak{k}x^{-1}$ to denote $(\text{Ad}x^{-1})(\mathfrak{k})$. Then the next lemma follows immediately from the definitions.

Lemma 2.1. For $x \in G$ and $p \in \mathcal{P}$ we have (i) $\text{Ad}x \circ E_{p,p^{-}} = E_{xp,x^{-}p^{-}} \circ \text{Ad}x$, and (ii) $E_{p,p^{-}} \circ \text{Ad}x = \text{Ad}x \circ E_{xp^{-},p^{-}x}$.

For two parabolic subalgebras p and q of g, we define $p \leftrightarrow q$ if and only if p and q have a common Levi factor. We say $E_{p,p^{-}} \leftrightarrow E_{q,q^{-}}$ if $p^{-} \leftrightarrow q^{-}$.

Lemma 2.2. Let $p, q \in \mathcal{P}$ with respective opposites p^{-} and q^{-}. Suppose $p \cap p^{-} \cap q \cap q^{-}$ contains a Cartan subalgebra of g. Then there exists $p_1, q_1 \in \mathcal{P}$ with respective opposites p_1^{-} and q_1^{-} such that $p_1 \subseteq p$, $p_1^{-} \subseteq p^{-}$, $q_1 \subseteq q$, $q_1^{-} \subseteq q^{-}$, $p_1^{-} \leftrightarrow q_1^{-}$ (so $E_{p_1,p_1^{-}} \leftrightarrow E_{q_1,q_1^{-}}$), and $E_{p,p^{-}} \circ E_{q,q^{-}} = E_{p_1,p_1^{-}} \circ E_{q_1,q_1^{-}}$.

Proof. Let $l_1 = p \cap p^{-}$, $l_2 = q \cap q^{-}$, and $l = l_1 \cap l_2$. Then we have the Levi decompositions $p = l_1 + u$, $p^{-} = l_1 + u^{-}$, $q = l_2 + v$, $q^{-} = l_2 + v^{-}$, where $u = r_n(p)$, $u^{-} = r_n(p^{-})$, $v = r_n(q)$, $v^{-} = r_n(q^{-})$. Let P, P^{-}, Q, Q^{-} denote the parabolic subgroups associated with the parabolic subalgebras p, p^{-}, q, q^{-}, respectively. We have the Levi decomposition of the parabolic subgroups $P = L_1U$, $P^{-} = L_1U^{-}$, $Q = L_2V$, and $Q^{-} = L_2V^{-}$, where $U = R_u(P)$, $U^{-} = R_u(P^{-})$, $V = R_u(Q)$, and $V^{-} = R_u(Q^{-})$. Consider the parabolic subalgebras
\[
p_1 = (p \cap q) + u = l + (l_1 \cap v) + u,
\]
\[
p_1^{-} = (p^{-} \cap q^{-}) + u^{-} = l + (l_1 \cap v^{-}) + u^{-},
\]
\[q_1 = (p \cap q) + v = l + (l_2 \cap u) + v,
\]
\[q_1^{-} = (p^{-} \cap q^{-}) + v^{-} = l + (l_2 \cap u^{-}) + v^{-}.
\]
Observe that p_1^{-} and q_1 have l as common Levi factor. Let $b \in \mathcal{B}$. By Corollary 1.2, $b \cap q_1$ contains a Cartan subalgebra \mathfrak{h}, say. There exists $x \in L_2 \cap U^{-}$, $y \in V^{-}$ such that $xy\mathfrak{h} \subseteq l$. Therefore, $xy\mathfrak{h} \subseteq l_2$. So $E_{q,q^{-}}(b) = (l_2 \cap xy\mathfrak{b}) + v$. Also $xy\mathfrak{h} \subseteq l$, $x \in L_2 \cap U^{-}$ implies that $xy\mathfrak{h} \subseteq p^{-}$. Hence
\[
E_{p,p^{-}} \circ E_{q,q^{-}}(b) = (l_1 \cap xy\mathfrak{b}) + (l_1 \cap x\mathfrak{v}) + u = (l_1 \cap xy\mathfrak{b}) + (l_1 \cap x\mathfrak{v}) + u.
\]
Now $x = x\mathfrak{v}$ as $x \in L_2 \subseteq Q$. But
\[
E_{q_1,q_1^{-}}(b) = (l_1 \cap xy\mathfrak{b}) + (l_2 \cap u) + v,
\]
so

\[E_{p_1, p_1^{-}} \circ E_{q_1, q_1^-} (b) = (I \cap x^y b) + (I_1 \cap v) + u = E_{p, p^{-}} \circ E_{q, q^{-}} (b), \]

which proves the lemma. □

Corollary 2.3. Let \(p, q \in \mathcal{P} \) with respective opposites \(p^- \) and \(q^- \). Then there exists \(p_1, q_1 \in \mathcal{P} \) with respective opposites \(p_1^- \) and \(q_1^- \) such that

\[E_{p_1, p_1^-} \leftrightarrow E_{q_1, q_1^-}, \]

\[p_1 \subseteq p, \quad p_1^- \subseteq p^- , \quad q_1 \subseteq q, \quad q_1^- \subseteq q^- , \quad \text{and} \quad E_{p, p^-} \circ E_{q, q^-} = E_{p_1, p_1^-} \circ E_{q_1, q_1^-}. \]

Proof. Let \(I_1 = p \cap p^-, \quad I_2 = q \cap q^- \). By Corollary 1.2, \(p^- \cap q \) contains a Cartan subalgebra \(h \), say. Let \(P, P^-, Q, Q^- \) denote the parabolic subgroups associated with \(p, p^-, q, q^- \), respectively. Let \(U = R_u(P), \quad U^- = R_u(P^-), \quad V = R_u(Q), \quad \text{and} \quad V^- = R_u(Q^-) \). Then there exists \(x \in U^- \) and \(y \in V \) such that \(h \subseteq I_1^x \) and \(h \subseteq I_2^y \). Then using Lemma 2.1,

\[E_{p, p^-} \circ E_{q, q^-} = E_{p, p^-} \circ \text{Ad} x \circ \text{Ad} y \circ E_{q, q^-} = \text{Ad} x \circ E_{p, p^-} \circ E_{q, q^-} \circ \text{Ad} y \]

since \(p_x = p^- \) and \(q_y = q^- \). By Lemma 2.2, since \(h \subseteq p^x \cap p^- \cap q \cap q^- \), we can find \(p_1, q_1 \in \mathcal{P} \) with opposites \(p_1^-, q_1^- \), respectively, such that \(p_1 \subseteq p^x, \quad p_1^- \subseteq p^- , \quad q_1 \subseteq q, \quad q_1^- \subseteq q^- , \quad p_1^- \leftrightarrow q_1 \), and \(E_{p, p^-} \circ E_{q, q^-} = E_{p_1, p_1^-} \circ E_{q_1, q_1^-} \). Hence using Lemma 2.1,

\[E_{p, p^-} \circ E_{q, q^-} = \text{Ad} x \circ E_{p_1, p_1^-} \circ E_{q_1, q_1^-} \circ \text{Ad} y \]

\[= E_{x p_1, p_1^-} \circ \text{Ad} x \circ \text{Ad} y \circ E_{q_1, q_1^-} = E_{x p_1, p_1^-} \circ E_{q_1, q_1^-}, \]

since \(x \in U^- \), \(y \in V \), so that \(x p_1^- = p_1^- \) and \(q_1^y = q_1^- \). Hence the corollary follows. □

Corollary 2.4. Let \(p, q \in \mathcal{P} \) with respective opposites \(p^- \) and \(q^- \). Suppose \(p \subseteq q \) and \(p^- \subseteq q^- \). Then \(E_{p, p^-} \circ E_{q, q^-} = E_{p, p^-} \circ E_{q, q^-} = E_{q, q^-} \circ E_{p, p^-} \).

Proof. By Lemma 2.2, we have

\[E_{p, p^-} \circ E_{q, q^-} = E_{p_1, p_1^-} \circ E_{q_1, q_1^-} \]

where \(p_1 = p \cap q + \tau_n(p) = p, \quad p_1^- = p^- \cap q^- + \tau_n(p^-) = p^- , \quad q_1 = p \cap q + \tau_n(q) = p, \quad\text{and} \quad q_1^- = p^- \cap q^- + \tau_n(q^-) = p^- . \) Hence \(E_{p, p^-} \circ E_{q, q^-} = E_{p, p^-} \circ E_{p^-} = E_{p, p^-} \).

Similarly, \(E_{q, q^-} \circ E_{p, p^-} = E_{p, p^-} \). □

Let \(M \) denote the monoid generated by the idempotent maps \(E_{p, p^-} \in \mathcal{P} \) with respect to composition.

Proposition 2.5. Let \(p \in \mathcal{P} \) be a maximal parabolic subalgebra of \(g \) with opposite \(p^- \). Let \(P \) and \(P^- \) be the parabolic subgroups of \(G \) associated with \(p \) and \(p^- \), respectively, and \(L = P \cap P^- \). Let \(\mathcal{A}_1 = \{ x \in G | E_{p, p^-} \circ \text{Ad} x \circ E_{p, p^-} \in M \} \). Then \(L \subseteq \mathcal{A}_1 \).

Proof. Without loss of generality, we may assume that \(P = P_J \) for some \(J = I \setminus \{ i \}, \quad 1 \leq i \leq n \). Let \(L = L_J, \quad P^- = P_J^-, \quad P = LU, \quad \text{where} \quad U = U_J = R_u(P_J) \) and \(P^- = LU^-, \quad \text{where} \quad U^- = U_J^- = R_u(P_J^-) \). Let \(u \in U, \quad v \in U^- \). Then by
Lemma 2.1, we have
\[E_{p, p^-} \circ \text{Ad} \, u \circ \text{Ad} \, v \circ E_{p, p^-} = \text{Ad} \, u \circ E_{p, p^-} \circ E_{p, p^-} \circ \text{Ad} \, v \quad \text{since } p^u = p, \quad p^v = p^- \]
\[= E_{p, p^-} \circ E_{p, p^-} \circ \text{Ad} \, u \circ \text{Ad} \, v \quad \text{since } u \in U, \quad v \in U^- . \]
Hence \(UU^- \subseteq \mathfrak{A}_1 \). Again, since \(E_{p, p^-} \circ \text{Ad} \, v = E_{p, p^-} \) as \(v \in U^- \) and \(\text{Ad} \, u \circ E_{p, p^-} = E_{p, p^-} \) as \(u \in U \), it follows that \(U^- U U^- U \subseteq \mathfrak{A}_1 \). Let \(\sigma = \alpha_i \) and \(U_\sigma, U_{-\sigma} \) be the two root subgroups corresponding to \(\sigma \) and \(-\sigma \), respectively. Consider the group \(G_\sigma = (U_\sigma, U_{-\sigma}) \) that is isomorphic to \(\text{SL}(2, \mathbb{C}) \). One then observes by direct computation that \(G_{\sigma} = U_{-\sigma} U_\sigma U_{-\sigma} U_\sigma \). Since \(\sigma \notin \{ \alpha_j | j \in J \} \) (see [1]) we have \(U_\sigma \subseteq U \) and \(U_{-\sigma} \subseteq U^- \). Thus \(G_{\sigma} \subseteq U^- U U^- U \subseteq \mathfrak{A}_1 \). Hence the maximal torus \(T_{\sigma} \) of \(G_{\sigma} \) is contained in \(\mathfrak{A}_1 \).

Now let \(\sigma_1 \) and \(\sigma_2 \) be two simple roots corresponding to two adjacent nodes in the Coxeter graph \(\Gamma \) of \(G \) and suppose that \(G_{a_1} \subseteq \mathfrak{A}_1 \). Then \(T_{\sigma_1} \subseteq L_{\sigma_2} \cap \mathfrak{A}_1 \cap L_{\sigma_1} = C(L_{\sigma_2})G_{a_1} \). But since \(\sigma_1 \) and \(\sigma_2 \) are adjacent, \(T_{\sigma_1} \not\subseteq C(L_{\sigma_2}) \). Hence \(G_{a_2} \subseteq L_{\sigma_2} \cap \mathfrak{A}_1 \), so \(G_{a_2} \subseteq \mathfrak{A}_1 \). Clearly, \(C(L) \subseteq \mathfrak{A}_1 \). Since the generalized Cartan matrix \(A = (a_{ij}) \) is indecomposable, \(\Gamma \) is connected. Hence \(G_\sigma \subseteq \mathfrak{A}_1 \) for all \(\sigma \in \{ \alpha_i | i \in I \} \). Since \(L \) is generated by \(C(L) \) and \(G_\sigma, \sigma \in \{ \alpha_i | i \in I \} \), it follows that \(\mathfrak{L} \subseteq \mathfrak{A}_1 \). □

Proposition 2.6. Let \(p \in \mathcal{P}, \ p \neq g, \) with opposite \(p^- \). Let \(\mathfrak{A} = \{ x \in G | E_{p, p^-} \circ \text{Ad} \, x \in M \} \). Then \(\mathfrak{A} = G \).

Proof. It is enough to prove the result for \(p \) maximal. For if \(p_1 \in \mathcal{P}, \ p_1 \subseteq p, \ p^-_1 \subseteq p^- \), then by Corollary 2.4,
\[E_{p_1, p^-_1} \circ \text{Ad} \, x = E_{p_1, p^-_1} \circ (E_{p, p^-} \circ \text{Ad} \, x) \in M \]
if \(E_{p, p^-} \circ \text{Ad} \, x \in M \). Let \(P, P^- \) denote the parabolic subgroups associated with \(p \) and \(p^- \), respectively. Let \(L = P \cap P^- \), \(P = LU \), \(P^- = LU^- \), where \(U = R_u(P) \) and \(U^- = R_u(P^-) \). Let \(u \in U \), \(v \in U^- \). Then by Lemma 2.1,
\[E_{p, p^-} \circ \text{Ad} \, u \circ \text{Ad} \, v = E_{p, p^-} \circ E_{p, p^-} \circ \text{Ad} \, u \circ \text{Ad} \, v \]
\[= E_{p, p^-} \circ (\text{Ad} \, u \circ E_{p, p^-}) \circ \text{Ad} \, v \quad \text{since } p^u = p, \]
\[= E_{p, p^-} \circ E_{p, p^-} \circ \text{Ad} \, u \circ \text{Ad} \, v \quad \text{since } u \in U, \]
\[= (E_{p, p^-} \circ \text{Ad} \, v) \circ E_{p, p^-} \]
\[= E_{p, p^-} \circ E_{p, p^-} \in M \quad \text{since } v \in U^- . \]
Hence \(U U^- \subseteq \mathfrak{A} \). Similarly, since \(E_{p, p^-} \circ \text{Ad} \, v = E_{p, p^-} \) for \(v \in U^- \), it follows that \(U^- U U^- \subseteq \mathfrak{A} \).

Since \(p \) is maximal, by Proposition 2.5 we have \(L \subseteq \mathfrak{A}_1 \). But for \(x \in L \), we have
\[E_{p, p^-} \circ \text{Ad} \, x \circ E_{p, p^-} = E_{p, p^-} \circ E_{p, p^-} \circ \text{Ad} \, x = E_{p, p^-} \circ \text{Ad} \, x . \]
Hence it follows that \(L \subseteq \mathfrak{A} \). Now since \((L \cap \mathfrak{A}) \mathfrak{A} \subseteq \mathfrak{A} \), we have \(L U^- U U^- \subseteq \mathfrak{A} \). Hence \(G \subseteq \mathfrak{A} \). So \(\mathfrak{A} = G \). □

Theorem 2.7. \(M = \{ 1 \} \cup \{ E \circ \text{Ad} \, x \circ E' | E, E' \in \mathcal{B} \backslash \{ 1 \}, \ x \in G \} \).

Proof. Let \(N = \{ 1 \} \cup \{ E \circ \text{Ad} \, x \circ E' | E, E' \in \mathcal{B} \backslash \{ 1 \}, \ x \in G \} \). By Proposition 2.6, we have \(N \subseteq M \). By Corollary 2.3, we have
\[M = \{ E_1 \circ E_2 \circ \cdots \circ E_k | E_1 \leftrightarrow E_2 \leftrightarrow \cdots \leftrightarrow E_k, \ E_i \in \mathcal{B} \} . \]
Let \(E_i = E_{p_i, p_i^-} \). Consider \(E_1 \circ E_2 \circ E_3 \) with \(E_1 \leftrightarrow E_2 \leftrightarrow E_3 \). Then \(p_1^- \leftrightarrow p_2 \) and \(p_2^- \leftrightarrow p_3 \). Let \(l_1 \subseteq p_1^- \cap p_2 \), \(l_2 = p_2 \cap p_2^- \), and \(l_3 \subseteq p_2^- \cap p_3 \) be the common Levi factors. Let \(P_2 \) and \(P_2^- \) denote the parabolic subgroups associated with \(p_2 \) and \(p_2^- \), respectively. Let \(L_2 = p_2 \cap p_2^- \), \(P_2 = L_2 U_2 \), and \(P_2^- = L_2 U_2^- \), where \(U_2 = R_u(P_2) \) and \(U_2^- = R_u(P_2^-) \). Then there exists \(u \in U_2 \) and \(v \in U_2^- \) such that \(l_1 = u l_2 \) and \(l_2 = v l_3 \). Let \(b \in B \) and \(b_1 = E_{p_3, p_3^-}(b) \). Then

\[
E_{p_1, p_1^-} \circ E_{p_2, p_2^-} \circ E_{p_1, p_1^-}(b_1) = E_{p_1, p_1^-} \circ \text{proj}_{p_2} \circ \text{proj}_{p_2^-}(b_1)
\]

\[
= E_{p_1, p_1^-} \circ \text{proj}_{p_2}((l_2 \cap \gamma b_1 + \tau_n(p_2)))
\]

\[
= E_{p_1, p_1^-}((l_1 \cap \gamma b_1 + \tau_n(p_2)))
\]

\[
= (E_{p_1, p_1^-} \circ \text{Ad}(uv))(b_1). \]

Hence

\[
E_{p_1, p_1^-} \circ E_{p_2, p_2^-} \circ E_{p_3, p_3^-} = E_{p_1, p_1^-} \circ \text{Ad}(uv) \circ E_{p_3, p_3^-}.
\]

Also note that \(l_1 \subseteq p_1^- \cap p_3 \), hence \(p_1^- \leftrightarrow \gamma p_3 \). Assume that \(E_1 \leftrightarrow E_2 \leftrightarrow \cdots \leftrightarrow E_{k-1} \) and \(E_1 \circ E_2 \circ \cdots \circ E_{k-1} = E_1 \circ \text{Ad} x \circ E_{k-1} \), with \(p_1^- \leftrightarrow \gamma p_{k-1} \), hence \(p_1^- \gamma x \leftrightarrow p_{k-1} \). Consider \(E_1 \circ E_2 \circ \cdots \circ E_k \) with \(E_1 \leftrightarrow E_2 \leftrightarrow \cdots \leftrightarrow E_k \). Then using Lemma 2.1,

\[
E_1 \circ E_2 \circ \cdots \circ E_{k-1} \circ E_k = E_1 \circ \text{Ad} x \circ E_{k-1} \circ E_k
\]

\[
= E_{p_1, p_1^-} \circ \text{Ad} x \circ E_{p_{k-1}, p_{k-1}^-} \circ E_{p_k, p_k^-}
\]

\[
= \text{Ad} x \circ E_{p_1, p_1^-} \circ E_{p_{k-1}, p_{k-1}^-} \circ E_{p_k, p_k^-}
\]

\[
= \text{Ad} x \circ E_{p_1, p_1^-} \circ \text{Ad} y \circ E_{p_{k-1}, p_{k-1}^-} \circ E_{p_k, p_k^-}
\]

\[
= (E_{p_1, p_1^-} \circ \text{Ad}(xy)) \circ E_{p_k, p_k^-} \quad \text{with } p_1^- \leftrightarrow \gamma p_k.
\]

Hence by induction \(E_1 \circ E_2 \circ \cdots \circ E_k = E_1 \circ \text{Ad} x \circ E_k \), \(x \in G \), for all \(k \). This proves that \(M \subseteq N \). Hence \(M = N \). \(\Box \)

Fix \(p \in B \) with opposite \(p^- \). Let \(E = E_{p, p^-} \) and \(l = p \cap p^- \). Let \(P \) and \(P^- \) denote the parabolic subgroups associated with \(p \) and \(p^- \), respectively, and \(L = P \cap P^- \). Let \(St_G(l) \) denote the stabilizer of \(l \) in \(G \) and let \(H = \{ x \in St_G(l) | b = x b \text{ for all } b \in B(l) \} \). Let \(\tilde{L} = St_G(l)/H \). Then we have the following

Theorem 2.8. The maximal subgroup of \(M \) with identity element \(E = E_{p, p^-} \) is \(\{ E \circ \text{Ad} x \circ E | x \in St_G(l) \} \) which is isomorphic to \(\tilde{L} \) as above.

Proof. The maximal subgroup of \(M \) with identity element \(E = E_{p, p^-} \) is the same as the group of units \(K \) say, of \(EME \). Let \(a \in K \). Then as in the proof of Theorem 2.7, we have \(a = E_{q, q^-} \circ \text{Ad} y \circ E_{q_1, q_1^-} \) for some \(y \in G \), where \(q \subseteq p \), \(q^- \subseteq p^- \), \(q_1 \subseteq p \), \(q_1^- \subseteq p^- \), and \(q^- \leftrightarrow \gamma q_1 \). Since \(a \in K \) is invertible and \(E \) is the identity in \(K \), there exists \(b \in K \) such that \(a \circ b = E \) and \(b \circ a = E \). Hence, by Corollary 2.4,

\[
E_{q, q^-} = E_{q, q^-} \circ E = E_{q, q^-} \circ a \circ b = a \circ b = E.
\]

Similarly,

\[
E_{q_1, q_1^-} = E \circ E_{q_1, q_1^-} = b \circ a \circ E_{q_1, q_1^-} = b \circ a = E.
\]
Hence \(a = E \circ \text{Ad} y \circ E \) for some \(y \in G \), and \(p^- \leftrightarrow y p^- \). Let \(l_1 = p^- \cap y p^- \). Let \(U = R_u(\mathcal{P}) \) and \(U^- = R_y(\mathcal{P}^-) \). Then there exists \(u \in U \) and \(v \in U^- \) such that \(l_1 = v l \) and \(l_1^- = v l^- \), hence \(yu l = l_1 \). Therefore, \(x l = l \), where \(x = v^{-1} y u \) so \(y = v x u^{-1} \). Hence \(x \in \text{St}_G(l) \) and

\[
a = E \circ \text{Ad} y \circ E = (E_{p, p^-} \circ \text{Ad} v) \circ \text{Ad} x \circ (\text{Ad} u^{-1} \circ E_{p, p^-})
\]

\[
= E_{p, p^-} \circ \text{Ad} x \circ E_{p, p^-} = E \circ \text{Ad} x \circ E,
\]

since \(v \in U^- \) and \(u^{-1} \in U \). Observe that \(l \subseteq p \cap p^{-x} \cap x p^- \). Now define the map \(\theta: \text{St}_G(l) \to K \), by \(\theta(x) = E \circ \text{Ad} x \circ E \). By the above discussion \(\theta \) is onto. Furthermore, for \(x, y \in \text{St}_G(l) \).

\[
\theta(x) \circ \theta(y) = E \circ \text{Ad} x \circ E \circ E \circ \text{Ad} y \circ E
\]

\[
= E_{p, p^-} \circ \text{Ad} x \circ E_{p, p^-} \circ \text{Ad} y \circ E_{p, p^-}
\]

\[
= \text{Ad}(xy) \circ E_{p^{xy}, p^{-xy}} \circ E_{p^y, p^{-y}} \circ E_{p, p^-} \quad \text{by Lemma 2.1},
\]

\[
= \text{Ad}(xy) \circ E_{p^{xy}, p^{-xy}} \circ E_{p, p^-}
\]

since \(p^{xy}, p^{-xy}, p^y, p^{-y}, p, p^- \) have common Levi factor \(l \),

\[
= E_{p, p^-} \circ \text{Ad}(xy) \circ E_{p, p^-} \quad \text{by Lemma 2.1}
\]

\[
= \theta(xy).
\]

Hence \(\theta \) is a surjective homomorphism. Clearly, \(\text{Ker} \theta = H \). Hence \(K \cong \text{St}_G(l)/H = \tilde{L} \). \(\square \)

We note that \(\tilde{L} \) is closely related to the Levi subgroup \(L \) of \(G \). We therefore see that the monoid \(M \) gives rise to groups closely related to Kac-Moody groups.

3. Examples

When \(g \) is finite dimensional, \(M \) is exactly the monoid generated by \(\text{proj}_p(p \in \mathcal{P}) \) and is isomorphic to the monoid studied in [5, Theorem 2] for the associated simple algebraic group. The situation is quite different when \(g \) is infinite dimensional. For example, consider the affine Kac-Moody Lie algebras \(g = A_1^{(1)} \) with Dynkin diagram

\[
(3.1)
\]

Then \(g \) has four standard positive parabolics, but the set \(\mathcal{P} \) of all positive parabolics is of course infinite. The monoid generated by \(\text{proj}_p(p \in \mathcal{P}) \) is not that interesting in that the subgroups of this monoid are trivial. We, therefore, are naturally led to considering our monoid \(M \) generated by \(E_{p, p^-} = \text{proj}_p \circ \text{proj}_p^{-} \). The only nontrivial subgroups of \(M \) are those corresponding to parabolic subalgebras \(p \) obtained by deleting a node of the diagram (3.1). The associated Levi factor \(l \) is a finite-dimensional Lie algebra with the simple part being \(\text{sl}_2(\mathbb{C}) \). The subgroup of \(M \) with identity element \(E_{p, p^-} \) is just the projective group \(\text{PGL}(2, \mathbb{C}) \).
To get finite-dimensional Kac-Moody groups, we consider the hyperbolic Kac-Moody Lie algebra \mathfrak{g}_1 with Dynkin diagram

(3.2)

Let $M_1 = M(\mathfrak{g}_1)$ denote the corresponding monoid. Let \mathfrak{p} denote the parabolic subalgebra obtained by deleting the right-most node in (3.2). Then the maximal subgroup of M_1 with identity $E_{\mathfrak{p},\mathfrak{p}^-}$ is 'almost' the Kac-Moody group corresponding to (3.1).

REFERENCES

DEPARTMENT OF MATHEMATICS, NORTH CAROLINA STATE UNIVERSITY, RALEIGH, NORTH CAROLINA 27695-8205