Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

A smooth holomorphically convex disc in $ {\bf C}\sp 2$ that is not locally polynomially convex


Author: Franc Forstnerič
Journal: Proc. Amer. Math. Soc. 116 (1992), 411-415
MSC: Primary 32E05; Secondary 32E20
DOI: https://doi.org/10.1090/S0002-9939-1992-1101982-0
MathSciNet review: 1101982
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We construct a smooth embedded disc in $ {{\mathbf{C}}^2}$ that is totally real except at one point $ p$, is holomorphically convex, but fails to be locally polynomially or even rationally convex at $ p$.


References [Enhancements On Off] (What's this?)

  • [1] E. Bishop, Differentiable manifolds in complex Euclidean spaces, Duke Math. J. 32 (1965), 1-21. MR 0200476 (34:369)
  • [2] J. Duval, Un exemple de disque polynômialement convexe, Math. Ann. 281 (1988), 583-588. MR 958260 (89j:32023)
  • [3] -, Convexité rationelle des surfaces lagrangiennes, preprint, 1990.
  • [4] F. Forstneric, A totally real three-sphere in $ {{\mathbf{C}}^3}$ bounding a family of analytic discs, Proc. Amer. Math. Soc. 108 (1990), 887-892. MR 1038758 (91g:32018)
  • [5] F. Forstneric and E. L. Stout, A new class of polynomially convex sets in $ {{\mathbf{C}}^2}$, Ark. Mat. 29 (1991), 51-62. MR 1115074 (92h:32016)
  • [6] L. Hörmander and J. Wermer, Uniform approximation on compact sets in $ {{\mathbf{C}}^n}$, Math. Scand. 23 (1968), 5-21. MR 0254275 (40:7484)
  • [7] K. J. Preskenis, Approximation on disks, Trans. Amer. Math. Soc. 171 (1972), 445-467. MR 0312123 (47:685)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 32E05, 32E20

Retrieve articles in all journals with MSC: 32E05, 32E20


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1992-1101982-0
Keywords: Totally real, holomorphically convex, polynomially convex
Article copyright: © Copyright 1992 American Mathematical Society

American Mathematical Society