Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Linear transformations of Wiener integrals


Authors: Chull Park and David Skoug
Journal: Proc. Amer. Math. Soc. 116 (1992), 445-456
MSC: Primary 46G12; Secondary 28C20
DOI: https://doi.org/10.1090/S0002-9939-1992-1107274-8
MathSciNet review: 1107274
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper we obtain a linear transformation theorem in which the Radon-Nikodym derivative is very closely related to the transformation. We also obtain a vector-valued conditional version of this linear transformation theorem.


References [Enhancements On Off] (What's this?)

  • [1] R. H. Cameron and W. T. Martin, Transformation of Wiener integrals under translations, Ann. of Math. (2) 45 (1944), 386-396. MR 0010346 (6:5f)
  • [2] -, Transformations of Wiener integrals under a general class of linear transformations, Trans. Amer. Math. Soc. 58 (1945), 184-219. MR 0013240 (7:127c)
  • [3] R. H. Cameron and D. A. Storvick, A new translation theorem for the analytic Feynman integral, Rev. Roumaine Math. Pures Appl. 27 (1982), 937-944. MR 683071 (85d:28010)
  • [4] J. L. Doob, Stochastic processes, Wiley, New York, 1965. MR 1038526 (91d:60002)
  • [5] K. Ito, Multiple Wiener integral, J. Math. Soc. Japan 3 (1951), 157-169. MR 0044064 (13:364a)
  • [6] C. Park, A generalized Paley-Wiener-Zygmund integral and its applications, Proc. Amer. Math. Soc. 23 (1969), 388-400. MR 0245752 (39:7058)
  • [7] -, On Fredholm transformations in Yeh-Wiener space, Pacific J. Math. 40 (1972), 173-195. MR 0304604 (46:3739)
  • [8] C. Park and D. Skoug, A note on Paley-Wiener-Zygmund stochastic integrals, Proc. Amer. Math. Soc. 103 (1988), 591-601. MR 943089 (89e:60109)
  • [9] -, A simple formula for conditional Wiener integrals with applications, Pacific J. Math. 135 (1988), 381-394. MR 968620 (90c:28022)
  • [10] -, Conditional Wiener integrals. II (submitted).
  • [11] I. E. Segal, Distributions in Hubert space and canonical systems of operators, Trans. Amer. Math. Soc. 88 (1958), 12-41. MR 0102759 (21:1545)
  • [12] L. A. Shepp, Radon-Nikodym derivatives of Gaussian measures, Ann. Math. Statist. 37 (1966), 321-354. MR 0190999 (32:8408)
  • [13] D. E. Varberg, On equivalence of Gaussian measures, Pacific J. Math. 11 (1961), 751-762. MR 0126861 (23:A4155)
  • [14] -, On Gaussian measures equivalent to Wiener measure, Trans. Amer. Math. Soc. 100 (1964), 262-273. MR 0165066 (29:2357)
  • [15] -, Equivalent Gaussian measures with a particularly simple Radon-Nikodym derivative, Ann. Math. Statist. 38 (1967), 1027-1030. MR 0214130 (35:4981)
  • [16] J. Yeh, Transformation of conditional Wiener integrals under translation and the Cameron-Martin translation theorem, Tôhoku Math. J. 30 (1978), 505-515. MR 516883 (80e:60094)
  • [17] J. Yeh and W. N. Hudson, Transformation of the generalized Wiener measure under a class of linear transformations, Tôhoku Math. J. 24 (1972), 423-433. MR 0321205 (47:9738)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 46G12, 28C20

Retrieve articles in all journals with MSC: 46G12, 28C20


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1992-1107274-8
Keywords: Gaussian measure, Wiener measure, Radon-Nikodym derivative, linear transformation, conditional Wiener integral
Article copyright: © Copyright 1992 American Mathematical Society

American Mathematical Society