Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

On the inverse of Mañé's projection


Author: H. Movahedi-Lankarani
Journal: Proc. Amer. Math. Soc. 116 (1992), 555-560
MSC: Primary 54E35; Secondary 46S10, 54C25
DOI: https://doi.org/10.1090/S0002-9939-1992-1111436-3
MathSciNet review: 1111436
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We show that every compact ultrametric space is bi-Lipschitz embeddable in a Hilbert space. We also provide an example of a compact ultrametric space whose fractal (and hence Hausdorff) dimension is finite, but which cannot be bi-Lipschitz embedded in any finite dimensional Euclidean space. This example, in particular, establishes that the inverse of Mañé's projection need not be Lipschitz even in the case of finite fractal dimension.


References [Enhancements On Off] (What's this?)

  • [1] P. Assouad, Plongements Lipschitziens dans $ {\mathbb{R}^n}$, Bull. Soc. Math. France 3(1983), 429-448. MR 763553 (86f:54050)
  • [2] A. Eden, C. Foias, B. Nicolaenko, and R. Temam, Hölder continuity for the inverse of Mãné's projection, September 1990, IMA Preprint Series No. 695, University of Minnesota, Minneapolis, Minnesota 55455. MR 1050131 (91b:58233)
  • [3] R. Mañé, Lecture Notes in Math., vol. 898, Springer-Verlag, New York, 1981, pp. 230-242.
  • [4] H. Movahedi-Lankarani, Minimal Lipschitz embeddings, Ph.D. Thesis, Pennsylvania State Univ., 1990.

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 54E35, 46S10, 54C25

Retrieve articles in all journals with MSC: 54E35, 46S10, 54C25


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1992-1111436-3
Article copyright: © Copyright 1992 American Mathematical Society

American Mathematical Society