Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

On the Thom spectra over $ \Omega({\rm SU}(n)/{\rm SO}(n))$ and Mahowald's $ X\sb k$ spectra


Author: Dung Yung Yan
Journal: Proc. Amer. Math. Soc. 116 (1992), 567-573
MSC: Primary 55P10
DOI: https://doi.org/10.1090/S0002-9939-1992-1123672-0
MathSciNet review: 1123672
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: The Thom spectra $ M(n)\quad ({2^k} \leq n \leq {2^{k + 1}} - 1)$ induced from $ \Omega (\operatorname{SU}(n)/\operatorname{SO}(n)) \to BO$ is a wedge of suspensions of Mahowald's $ {X_k}$ spectra that is induced from $ \Omega {J_{{2^k} - 1}}{S^2} \to {\Omega ^2}{S^3} \to BO$, where $ {J_i}$ is the $ i$th stage of the James construction.


References [Enhancements On Off] (What's this?)

  • [1] F. R. Cohen, J. P. May, and L. R. Taylor, $ K(\mathbb{Z},0)$ and $ K(\mathbb{Z}/2,0)$ as Thom spectra, Illinois J. Math. 25 (1981), 99-106. MR 602900 (82h:55008)
  • [2] M. J. Hopkins, Stable decomposition of certain loop spaces, Thesis, Northwestern Univ., Evanston, IL, 1984.
  • [3] I. Madsen and R. J. Milgram, On spherical fiber bundles and their PL reductions, London Math. Soc. Lecture Note Ser., vol. 11, Cambridge Univ. Press, Cambridge and New York, 1974, pp. 43-60. MR 0343286 (49:8028)
  • [4] M. Mahowald, A new infinite family in $ {2^{\pi _*^s}}$, Topology 16 (1977), 249-256. MR 0445498 (56:3838)
  • [5] -, Ring spectra which are Thorn complexes, Duke Math. J. 46 (1979), 549-559. MR 544245 (81f:55010)
  • [6] J. W. Milnor and J. C. Moore, On the structure of Hopf algebras, Ann. of Math. (2) 67 (1958), 150-171. MR 0174052 (30:4259)
  • [7] N. E. Steenrod and D. B. A. Epstein, Cohomology operations, Ann. of Math. Stud., vol. 50, Princeton Univ. Press, Princeton, NJ, 1962. MR 0145525 (26:3056)
  • [8] Dung Yung Yan, Brown-Peterson homology of Mahowald's $ {X_k}$ spectra, preprint.
  • [9] E. C. Zeeman, A proof of the comparison theorem for spectral sequences, Proc. Cambridge Philos. Soc. 53 (1957), 57-62. MR 0084769 (18:918f)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 55P10

Retrieve articles in all journals with MSC: 55P10


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1992-1123672-0
Article copyright: © Copyright 1992 American Mathematical Society

American Mathematical Society