Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

On the mapping class group of spherical $ 3$-orbifolds


Authors: Scipio Cuccagna and Bruno Zimmermann
Journal: Proc. Amer. Math. Soc. 116 (1992), 561-566
MSC: Primary 57M60; Secondary 57M50
DOI: https://doi.org/10.1090/S0002-9939-1992-1129875-3
MathSciNet review: 1129875
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We prove that the mapping class group of a spherical $ 3$-orbifold with nonempty singular set is finite and can be realized by a finite group of diffeomorphisms; we also indicate how to compute this group.


References [Enhancements On Off] (What's this?)

  • [BO] M. Boileau and J.-P. Otal, Groups des difféotopies de certaines variétés de Seifert, C. R. Acad. Sci. Paris 303 (1986), 19-22. MR 849619 (87g:57022)
  • [BM] G. Burde and K. Murasugi, Links and Seifert fiber spaces, Duke Math. J. 37 (1970), 89-93. MR 0253313 (40:6528)
  • [BS] F. Bonahon and L. Siebenmann, The characteristic splitting of irreducible compact $ 3$orbifolds, Math. Ann. 278 (1987), 441-479. MR 909236 (90a:57017)
  • [Co] P. E. Conner, Transformation groups on a $ K(\pi ,1)$. II, Michigan Math. J. 6 (1959), 413-417. MR 0123334 (23:A662)
  • [D1] W. D. Dunbar, Hierarchies for $ 3$-orbifolds, Topology Appl. 29 (1988), 267-283. MR 953958 (89h:57008)
  • [D2] -, Geometric orbifolds, Rev. Mat. Univ. Complutense Madrid 1 (1988), 67-99. MR 977042 (90k:22011)
  • [DM] M. W. Davies and J. W. Morgan, Finite group actions on homotopy spheres, The Smith Conjecture (J. Morgan and H. Bass, eds.), Academic Press, New York and London, 1984.
  • [GL] C. McA. Gordon and R. Litherland, Incompressible surfaces in branched coverings, The Smith Conjecture (J. Morgan and H. Bass, eds.), Academic Press, New York and London, 1984. MR 758466
  • [HR] C. Hodgson and J. H. Rubinstein, Involutions and isotopies of lens spaces, Knot Theory and $ 3$-Manifolds, Lecture Notes in Math., vol. 1144, Springer-Verlag, Berlin, Heidelberg and New York, 1985, pp. 60-96. MR 823282 (87h:57028)
  • [Ja] W. Jaco, Lectures on $ 3$-manifold topology, Regional Conf. Ser. in Math., vol. 43, Amer. Math. Soc., Providence, RI, 1980. MR 565450 (81k:57009)
  • [Jo] K. Johannson, Homotopy equivalences of $ 3$-manifolds with boundary, Lecture Notes in Math., vol. 761, Springer-Verlag, Berlin and New York, 1979. MR 551744 (82c:57005)
  • [Ro] M. Rothenberg, Torsion invariants and finite transformation groups, Proc. Sympos. Pure Math., vol. 32, Amer. Math. Soc., Providence, RI, 1978, pp. 267-311. MR 520507 (80j:57038)
  • [Sa] M. Sakuma, The geometries of spherical Montesinos links, preprint. MR 1096689 (92e:57018)
  • [T1] W. Thurston, Three dimensional manifolds, Kleinian groups and hyperbolic geometry, Bull. Amer. Math. Soc. (N.S.) 6 (1982), 357-381. MR 648524 (83h:57019)
  • [T2] -, $ 3$-manifolds with symmetry, preprint, 1982.
  • [T3] -, The geometry and topology of $ 3$-manifolds, lecture notes, Princeton Univ., 1976-1979.
  • [Ta] Y. Takeuchi, Waldhausen's classification theorem for finitely uniformizable $ 3$-orbifolds, preprint.
  • [To] J. L. Tollefson, Involutions of sufficiently large $ 3$-manifolds, Topology 20 (1981), 323-352. MR 617370 (82h:57014)
  • [TS] W. Threlfall and H. Seifert, Topologische Untersuchung der Diskontinuitätsbereiche endlicher Bewegungsgruppen des dreidimensionalen sphärischen, Raumes I und II, Math. Ann. 104 (1930), 1-70, 107 (1932), 543-586. MR 1512649
  • [Wa] F. Waldhausen, On irreducible $ 3$-manifolds which are sufficiently large, Ann. of Math. (2) 87 (1968), 56-88. MR 0224099 (36:7146)
  • [Z1] B. Zimmermann, Über Gruppen von Homöomorphismen Seifertscher Faserräume und flacher Mannigfaltigkeiten, Manuscripta Math. 30 (1980), 361-373. MR 567213 (82c:57024)
  • [Z2] -, Nielsensche Realisierungssätze für Seifertfaserungen, Manuscripta Math. 51 (1985), 225-242. MR 788680 (86i:57050)
  • [Z3] -, Isotopies of Seifert fibered, hyperbolic and euclidean $ 3$-orbifolds, Quart. J. Math. Oxford 40 (1989), 361-369. MR 1010826 (90h:57037)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 57M60, 57M50

Retrieve articles in all journals with MSC: 57M60, 57M50


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1992-1129875-3
Article copyright: © Copyright 1992 American Mathematical Society

American Mathematical Society