IMPORTANT NOTICE

The AMS website will be down for maintenance on May 23 between 6:00am - 8:00am EDT. For questions please contact AMS Customer Service at cust-serv@ams.org or (800) 321-4267 (U.S. & Canada), (401) 455-4000 (Worldwide).

 

Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

A note on the commutants of CSL algebras modulo bimodules


Author: De Guang Han
Journal: Proc. Amer. Math. Soc. 116 (1992), 707-709
MSC: Primary 47D25
DOI: https://doi.org/10.1090/S0002-9939-1992-1097342-1
MathSciNet review: 1097342
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: In this note, we show that for any $ \sigma $-weakly closed bimodule $ M$ of a CSL algebra $ A$ satisfying $ M \supseteq A$, the commutant of $ A$ modulo $ M$ is equal to $ M$ itself. Theorem 6 provided a result on the cohomology groups of CSL subalgebras of Von Neumann algebras.


References [Enhancements On Off] (What's this?)


Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 47D25

Retrieve articles in all journals with MSC: 47D25


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1992-1097342-1
Keywords: Bimodules, commutant, cohomology group
Article copyright: © Copyright 1992 American Mathematical Society

American Mathematical Society