Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

A remark on Sakai's quadratic Radon-Nikodým theorem


Author: Hideki Kosaki
Journal: Proc. Amer. Math. Soc. 116 (1992), 783-786
MSC: Primary 46L10; Secondary 46L30, 46L50
DOI: https://doi.org/10.1090/S0002-9939-1992-1099341-2
MathSciNet review: 1099341
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Sakai's Radon-Nikodym theorem (in a quadratic form) for normal states on a von Neumann algebra is considered. We show that the conclusion of this theorem follows from a much weaker order assumption on involved states.


References [Enhancements On Off] (What's this?)

  • [1] H. Araki, Some properties of modular conjugation operator of von Neumann algebras and a non-commutative Radon-Nikodym theorem with a chain rule, Pacific J. Math. 50 (1974). 309-354. MR 0350437 (50:2929)
  • [2] A. Connes, Caracterisation des espaces vectorieles ordonnées sousjacents aux algèbres de von Neumann, Ann. Inst. Fourier (Grenoble) 24 (1974), 121-155. MR 0377533 (51:13705)
  • [3] A. Connes and M. Takesaki, The flow of weights on factors of type. III, Tohoku J. Math. 29 (1977), 475-575. MR 480760 (82a:46069a)
  • [4] T. Fack and H. Kosaki, Generalized $ s$-numbers of $ \tau $-measurable operators, Pacific J. Math. 123 (1986), 269-300. MR 840845 (87h:46122)
  • [5] T. Furuta, $ A \geq B \geq 0$ assures $ {({B^r}{A^p}{B^r})^{1/q}} \geq {B^{(p + 2r)/q}}$ with $ (1 + 2r)q \geq p + 2r$, Proc. Amer. Math. Soc. 101 (1987), 85-88. MR 897075 (89b:47028)
  • [6] U. Haagerup, The standard form of a von Neumann algebra, Math. Scand. 37 (1975), 271-285. MR 0407615 (53:11387)
  • [7] -, $ {L_p}$-spaces associated with an arbitrary von Neumann algebra, Algèbres d'Opérateurs et Leurs Applications en Physique Mathématique, Colloq. Internat. CNRS, vol. 274, CNRS, Paris, 1979. MR 560633 (81e:46050)
  • [8] B. Iochum and H. Kosaki, Linear Radon-Nikodym theorems for states on JBW and $ {W^*}$ algebras, Publ. Res. Inst. Math. Sci. 21 (1985), 1205-1222. MR 842415 (87j:46115)
  • [9] H. Kosaki, Linear Radon-Nikodym theorems for states on a von Neumann algebra, Publ. Res. Inst. Math. Sci. 18 (1982), 379-386. MR 660834 (84h:46086)
  • [10] G. Pedersen, On the operator equation $ HT + TH = 2K$, Indiana Univ. Math. J. 25 (1976), 1029-1033. MR 0470721 (57:10467)
  • [11] G. Pedersen and M. Takesaki, The operator equation $ THT = K$, Proc. Amer. Math. Soc. 36 (1972), 311-312. MR 0306958 (46:6079)
  • [12] S. Sakai, A Radon-Nikodym theorem in $ {W^*}$-algebras, Bull. Amer. Math. Soc. 71 (1965), 149-151. MR 0174992 (30:5180)
  • [13] M. Takesaki, Tomita 's theory of modular Hilbert algebras and its applications, Lecture Notes in Math., vol. 128, Springer, Berlin and New York, 1979.
  • [14] O. E. Tikhonov, Continuity of operator functions in topologies connected with a trace on a von Neumann algebra, Izv. Vyssh. Ucheben. Zaved. Math. 31 (1987), 110-140. (Russian) MR 892008 (88h:46120)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 46L10, 46L30, 46L50

Retrieve articles in all journals with MSC: 46L10, 46L30, 46L50


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1992-1099341-2
Article copyright: © Copyright 1992 American Mathematical Society

American Mathematical Society