Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

The type of the maximal operators of a class of Walsh convolution operators


Authors: Ze Lin He and David Mustard
Journal: Proc. Amer. Math. Soc. 116 (1992), 711-719
MSC: Primary 42C10; Secondary 47B35
DOI: https://doi.org/10.1090/S0002-9939-1992-1099342-4
MathSciNet review: 1099342
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: This paper discusses the properties of a class of $ p$-adic Walsh convolution operators. The class consists of those $ 1$-parameter sets of operators with kernels that can be represented as the $ p$-adic Walsh-Fourier integral of a uniformly quasi-convex function. The paper proves that the maximal operators associated with each $ 1$-parameter set are all of strong type $ (\infty ,\infty )$ and of weak type $ (1,1)$.


References [Enhancements On Off] (What's this?)

  • [1] S. L. Blumin, On the linear summation method for Fourier series with respect to a multiplicative system, Sibirsk Mat. Z. 9 (1968), no. 2, 449-455. (Russian)
  • [2] P. L. Butzer and R. J. Nessel, Fourier analysis and approximation, vol. I, Birkhäuser, Basel, and Academic Press, New York, 1971. MR 0510857 (58:23312)
  • [3] N. J. Fine, Cesäro summability of Walsh-Fourier series, Proc. Nat. Acad. Sci. U.S.A. 41 (1955), 588-591. MR 0070757 (17:31f)
  • [4] N. J. Fine, On the Walsh functions, Trans. Amer. Math. Soc. 65 (1949), 372-414. MR 0032833 (11:352b)
  • [5] He Zelin, Notes on Walsh-approximation, J. Nanjing Univ. 4 (1981), 409-418. MR 657733 (84a:41024)
  • [6] -, General linear summation of Vilenkin-Fourier series, Acta Math. Hungar. 46 (1985), 285-295. MR 832721 (87e:43012)
  • [7] -, On representation of quasi-convex functions by $ L({\mathbb{R}^ + })$-Walsh transform, J. Nanjing Univ. Math. Biquarterly 1 (1987), 15-20.
  • [8] J. Pál and P. Simon, On a generalization of the concept of derivative, Acta Math. Acad. Sci. Hungar. 29 (1977), 155-164. MR 0450884 (56:9176)
  • [9] F. Schipp, Uber Gewissen Maximaloperatoren, Ann. Univ. Sci. Budapest Sect. Math. 18 (1975), 189-195. MR 0430665 (55:3670)
  • [10] W. R. Wade, Recent developments in the theory of Walsh series, Internat. J. Math. Sci. 5 (1982), 625-673. MR 679409 (84d:42033)
  • [11] R. G. Selfridge, Generalized Walsh transform, Pacific J. Math. 5 (1955), 451-480. MR 0079145 (18:36d)
  • [12] E. M. Stein, Singular integrals and differentiability properties of functions, Princeton Univ. Press, Princeton, NJ, 1970. MR 0290095 (44:7280)
  • [13] S. Yano, Cesàro summability of Walsh-Fourier series, Tôhoku Math. J. 9 (1957), 267-272. MR 0095384 (20:1887)
  • [14] Young Wo Song, Mean convergence of generalized Walsh-Fourier series, Trans. Amer. Math. Soc. 218 (1976), 311-320. MR 0394022 (52:14828)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 42C10, 47B35

Retrieve articles in all journals with MSC: 42C10, 47B35


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1992-1099342-4
Article copyright: © Copyright 1992 American Mathematical Society

American Mathematical Society