Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Weighted norm inequalities for Bochner-Riesz operators and singular integral operators


Authors: Xian Liang Shi and Qi Yu Sun
Journal: Proc. Amer. Math. Soc. 116 (1992), 665-673
MSC: Primary 42B20; Secondary 42B08, 42B15, 42B25, 47G10
DOI: https://doi.org/10.1090/S0002-9939-1992-1136237-1
MathSciNet review: 1136237
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Weighted norm inequalities for the Bochner-Riesz operator at the critical index $ \frac{1}{2}(n - 1)$ are investigated. We also give some weighted norm inequalities for a class of singular integral operators introduced by Fefferman and Namazi.


References [Enhancements On Off] (What's this?)

  • [1] K. F. Andersen, Weighted norm inequalities for Bochner-Riesz spherical summation multipliers, Proc. Amer. Math. Soc. 103 (1988), 165-170. MR 938663 (89i:42025)
  • [2] A. Carbery, A weighted inequality for the maximal Bochner-Riesz operator on $ {R^2}$, Trans. Amer. Math. Soc. 289 (1985), 673-680. MR 768732 (86d:42017)
  • [3] A. Carbery, J. L. Rubio de Francia, and L. Vega, Almost everywhere summability of Fourier integrals, J. London Math. Soc. (2) 38 (1988), 513-524. MR 972135 (90e:42033)
  • [4] L. Carleson and P. Sjolin, Oscillatory integrals and a multiplier problem for the disc, Studia Math. 44 (1972), 287-299. MR 0361607 (50:14052)
  • [5] L.-K. Chen, On a singular integral, Studia Math. 85 (1987), 61-72. MR 879417 (88i:42026)
  • [6] M. Christ, Weak type endpoint bounds for Bochner-Riesz multiplier, Rev. Mat. Iberoamericana 3 (1987), 25-31. MR 1008443 (90i:42024)
  • [7] J. Duoandikoetxea and J. L. Rubio de Francia, Maximal and singular integral operators via Fourier transform estimate, Invent. Math. 84 (1986), 541-561. MR 837527 (87f:42046)
  • [8] C. Fefferman, Inequalities for strongly singular convolution operators, Acta Math. 124 (1970), 9-36. MR 0257819 (41:2468)
  • [9] R. Fefferman, A note on singular integral, Proc. Amer. Math. Soc. 74 (1979), 266-270. MR 524298 (81e:42025)
  • [10] J. Garcia-Cuerva and J. L. Rubio de Francia, Weighted norm inequalities and related topics, North-Holland, Amsterdam, 1985. MR 807149 (87d:42023)
  • [11] B. Muckenhoupt, Weighted norm inequalities for the Hardy maximal function, Trans. Amer. Math. Soc. 165 (1972), 207-226. MR 0293384 (45:2461)
  • [12] I. I. Hirschman, Multiplier transforms. II, Duke Math. J. 28 (1961), 45-50. MR 0124693 (23:A2004)
  • [13] D. S. Kurtz and R. L. Wheeden, Results on weighted norm inequalities for multiplier, Trans. Amer. Math. Soc. 255 (1979), 343-362. MR 542885 (81j:42021)
  • [14] S.-Z. Lu, A class of maximal functions on spherical Riesz means, Sci. Sinica 29 (1986), 113-137. MR 852368 (88a:42018)
  • [15] J. Namazi, On a singular integral, Proc. Amer. Math. Soc. 96 (1986), 421-424. MR 822432 (87e:42023)
  • [16] J. L. Rubio de Francia, Weighted norm inequalities and vector valued inequalities, Lecture Notes in Math., vol. 908, Springer-Verlag, Berlin and New York, 1982, pp. 86-101. MR 654181 (83h:42025)
  • [17] X. Shi, Some remarks on singular integrals, Indiana Univ. Math. J. 35 (1986), 103-116. MR 825630 (87j:42037)
  • [18] Q. Sun, Two problems about singular integral operators, Approx. Theory Appl. 7 (1991), 83-98. MR 1142191 (93c:42018)
  • [19] P. Tomas, Restriction theorem for the Fourier transform, Proc. Sympos. Pure Math., vol. 35, Amer. Math. Soc., Providence, RI, 1979, pp. 111-114. MR 545245 (81d:42029)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 42B20, 42B08, 42B15, 42B25, 47G10

Retrieve articles in all journals with MSC: 42B20, 42B08, 42B15, 42B25, 47G10


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1992-1136237-1
Article copyright: © Copyright 1992 American Mathematical Society

American Mathematical Society