Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Classification theorem for Menger manifolds


Author: A. Chigogidze
Journal: Proc. Amer. Math. Soc. 116 (1992), 825-832
MSC: Primary 55P15; Secondary 54F35, 57N20
DOI: https://doi.org/10.1090/S0002-9939-1992-1143015-6
MathSciNet review: 1143015
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We introduce the notion of the $ n$-homotopy kernel of a Menger manifold and prove the following theorem: Menger manifolds are $ n$-homotopy equivalent if and only if the $ n$-homotopy kernels are homeomorphic.


References [Enhancements On Off] (What's this?)

  • [1] M. Bestvina, Characterizing $ k$-dimensional universal Menger compacta, Mem. Amer. Math. Soc., vol. 71, no. 380, Amer. Math. Soc., Providence, RI, 1988. MR 920964 (89g:54083)
  • [2] T. A. Chapman, Lectures on Hilbert cube manifolds, C.B.M.S. Regional Conf. Ser. in Math., vol. 28, Amer. Math. Soc., Providence, RI, 1976. MR 0423357 (54:11336)
  • [3] A. Chigogidze, Compacta lying in the $ n$-dimensional universal Menger compactum and having homeomorphic complements in it, Mat. Sb. 133 (1987), 481-496; English transl., Math. USSR-Sb. 61 (1988), 471-484. MR 911804 (89c:54071)
  • [4] -, $ n$-shapes and $ n$-cohomotopy groups of compacta, Mat. Sb. 180 (1989), 322-335; English transl., Math. USSR-Sb. 66 (1990), 329-342. MR 993228 (90f:54056)
  • [5] -, Theory of $ n$-shape, Uspekhi Mat. Nauk 44 (1989), 117-140; English transl., Russian Math. Surveys 44 (1989), 145-174. MR 1040271 (91g:57020)
  • [6] -, $ n$-soft maps of $ n$-dimensional spaces, Mat. Z. 46 (1989), 88-95. (Russian)
  • [7] -, $ U{V^n}$-equivalence and $ n$-equivalence (to appear).
  • [8] A. N. Dranishnikov, Universal Menger compacta and universal maps, Mat. Sb. 129 (1986), 121-139; English transl., Math. USSR-Sb. 57 (1987), 131-150. MR 830099 (87m:54039)
  • [9] R. Engelking, Dimension theory, PWN, Warsaw, 1978. MR 0482697 (58:2753b)
  • [10] R. H. Fox, On the Lusternik-Schnirelman category, Ann. of Math. (2) 42 (1941), 333-370. MR 0004108 (2:320f)
  • [11] R. C. Lacher, Cell-like mappings and their generalizations, Bull. Amer. Math. Soc. 83 (1977), 495-552. MR 0645403 (58:31095)
  • [12] J. H. C. Whitehead, Combinatorial homotopy. I, II, Bull. Amer. Math. Soc. 55 (1949), 213-245, 453-496. MR 0030759 (11:48b)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 55P15, 54F35, 57N20

Retrieve articles in all journals with MSC: 55P15, 54F35, 57N20


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1992-1143015-6
Article copyright: © Copyright 1992 American Mathematical Society

American Mathematical Society