Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

The long-time behavior of geodesics in certain left-invariant metrics


Author: J. E. D’Atri
Journal: Proc. Amer. Math. Soc. 116 (1992), 813-817
MSC: Primary 53C22; Secondary 32H15, 53C30
DOI: https://doi.org/10.1090/S0002-9939-1992-1145417-0
MathSciNet review: 1145417
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We introduce a new notion to describe the behavior of geodesics as the parameter increases to infinity and obtain quantitative results for a class of left-invariant metrics that includes the Bergman metric on bounded homogeneous domains.


References [Enhancements On Off] (What's this?)

  • [1] R. Azencott and E. N. Wilson, Homogeneous manifolds with negative curvature. I, Trans. Amer. Math. Soc. 215 (1976), 323-362. MR 0394507 (52:15308)
  • [2] W. Ballmann, M. Gromov, and V. Schroeder, Manifolds of nonpositive curvature, Birkhäuser, Boston, MA, 1985. MR 823981 (87h:53050)
  • [3] J. E. D'Atri, Sectional curvatures and quasi-symmetric domains, J. Differential Geom. 16 (1981), 11-18. MR 633621 (83e:53063)
  • [4] J. E. D'Atri and J. Dorfmeister, Flat totally geodesic submanifolds of quasisymmetric Siegel domains, Geom. Dedicata 28 (1988), 321-336. MR 978503 (90f:32034)
  • [5] J. E. D'Atri and I. dotti Miatello, A characterization of bounded symmetric domains by curvature, Trans. Amer. Math. Soc. 276 (1983), 531-540. MR 688960 (84f:32038)
  • [6] J. E. D'Atri and Zhao Yan da, Geodesics and Jacobi fields in bounded homogeneous domains, Proc. Amer. Math. Soc. 89 (1983), 55-61. MR 706511 (84m:32045)
  • [7] P. Eberlein, Rigidity problems of manifolds of nonpositive curvature, Proceedings of a Conference on Global Differential Geometry and Global Analysis, Berlin, Lecture Notes in Math., vol. 1156, Springer-Verlag, New York, Heidelberg, and Berlin, 1985. MR 824064 (87d:53080)
  • [8] P. Eberlein and B. O'Neill, Visibility manifolds, Pacific J. Math. 46 (1973), 45-110. MR 0336648 (49:1421)
  • [9] H. Furstenberg, Boundaries of Riemannian symmetric spaces, Symmetric Spaces-short courses presented at Washington University, Dekker, New York, 1972. MR 0438048 (55:10969)
  • [10] E. Heintze, On homogeneous manifolds of negative curvature, Math. Ann. 211 (1974), 23-34. MR 0353210 (50:5695)
  • [11] S. Helgason, Differential geometry and symmetric spaces, Academic Press, New York, 1962. MR 0145455 (26:2986)
  • [12] S. Kobayashi and K. Nomizu, Foundations of differential geometry. II, Interscience, New York, 1969.
  • [13] A. Koranyi, Harmonic functions on symmetric spaces, Symmetric Spaces-short courses presented at Washington University, Dekker, New York, 1972. MR 0407541 (53:11314)
  • [14] G. Warner, Harmonic analysis on semi-simple Lie groups. I, Springer-Verlag, New York, Heidelberg, and Berlin, 1972. MR 0498999 (58:16979)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 53C22, 32H15, 53C30

Retrieve articles in all journals with MSC: 53C22, 32H15, 53C30


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1992-1145417-0
Keywords: Riemannian metric, left-invariant metric, geodesic, bounded homogeneous domain
Article copyright: © Copyright 1992 American Mathematical Society

American Mathematical Society