Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Multiplicative subgroups of finite index in a ring


Authors: Vitaly Bergelson and Daniel B. Shapiro
Journal: Proc. Amer. Math. Soc. 116 (1992), 885-896
MSC: Primary 16B99; Secondary 05D10, 12E99
DOI: https://doi.org/10.1090/S0002-9939-1992-1095220-5
MathSciNet review: 1095220
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: If $ G$ is a subgroup of finite index in the multiplicative group of an infinite field $ K$ then $ G - G = K$. Similar results hold for various rings.


References [Enhancements On Off] (What's this?)

  • [Bec] E. Becker, Extended Artin-Schreier theory of fields, Rocky Mountain J. Math. 14 (1984), 881-897. MR 773127 (86f:12001)
  • [Ber] V. Bergelson, Ergodic Ramsey theory, Logic and Combinatorics (S. G. Simpson, ed.), Contemp. Math., vol. 65, Amer. Math. Soc., Providence, RI, 1987, pp. 63-87. MR 891243 (88h:05003)
  • [B] P. Berrizbeitia, Additive properties of multiplicative subgroups of finite index infields, Proc. Amer. Math. Soc. 112 (1991), 365-369. MR 1057940 (91i:12003)
  • [F] H. Furstenberg, Recurrence in ergodic theory and combinatorial number theory, Princeton Univ. Press, Princeton, NJ, 1981. MR 603625 (82j:28010)
  • [GRS] L. Graham, B. L. Rothschild, and J. H. Spencer, Ramsey theory, John Wiley & Sons, New York, 1980. MR 591457 (82b:05001)
  • [G] F. Greenleaf, Invariant means on topological groups and their applications, van Nostrand. New York, 1969. MR 0251549 (40:4776)
  • [HO] A. J. Hahn and O. T. O'Meara, The classical groups and $ K$-theory, Springer-Verlag, Berlin, 1989.
  • [HR] E. Hewitt and K. A. Ross, Abstract harmonic analysis, vol. 1, Springer-Verlag, Berlin, 1963.
  • [J] N. Jacobson, Basic algebra. I, II, Freeman, San Francisco, 1974, 1980. MR 0356989 (50:9457)
  • [LS] D. B. Leep and D. B. Shapiro, Multiplicative subgroups of index three in afield, Proc. Amer. Math. Soc. 105 (1989), 802-807. MR 963572 (89m:11127)
  • [W] S. Wagon, The Banach-Tarski paradox, Cambridge, Univ. Press, Cambridge, 1985. MR 803509 (87e:04007)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 16B99, 05D10, 12E99

Retrieve articles in all journals with MSC: 16B99, 05D10, 12E99


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1992-1095220-5
Article copyright: © Copyright 1992 American Mathematical Society

American Mathematical Society