Publications Meetings The Profession Membership Programs Math Samplings Policy & Advocacy In the News About the AMS

Remote Access
Green Open Access
Proceedings of the American Mathematical Society
Proceedings of the American Mathematical Society
ISSN 1088-6826(online) ISSN 0002-9939(print)


Interpolating functions of minimal norm, star-invariant subspaces and kernels of Toeplitz operators

Author: Konstantin M. Dyakonov
Journal: Proc. Amer. Math. Soc. 116 (1992), 1007-1013
MSC: Primary 30D55; Secondary 30E05, 47B35
MathSciNet review: 1100649
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: It is proved that for each inner function $ \theta $ there exists an interpolating sequence $ \left\{ {{z_n}} \right\}$ in the disk such that $ {\sup _n}\vert\theta ({z_n})\vert < 1$, but every function $ g$ in $ {H^\infty }$ with $ g({z_n}) = \theta ({z_n})(n = 1,2, \ldots )$ satisfies $ \vert\vert g\vert{\vert _\infty } \geq 1$. Some results are obtained concerning interpolation in the star-invariant subspace $ {H^2} \ominus \theta {H^2}$. This paper also contains a "geometric" result connected with kernels of Toeplitz operators.

References [Enhancements On Off] (What's this?)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 30D55, 30E05, 47B35

Retrieve articles in all journals with MSC: 30D55, 30E05, 47B35

Additional Information

PII: S 0002-9939(1992)1100649-2
Keywords: Inner function, interpolating Blaschke product, star-invariant subspace, extreme point, Toeplitz operator
Article copyright: © Copyright 1992 American Mathematical Society

Comments: Email Webmaster

© Copyright , American Mathematical Society
Contact Us · Sitemap · Privacy Statement

Connect with us Facebook Twitter Google+ LinkedIn Instagram RSS feeds Blogs YouTube Podcasts Wikipedia