SPECIAL α-LIMIT POINTS FOR MAPS OF THE INTERVAL

MICHAEL W. HERO

(Communicated by Andrew M. Bruckner)

ABSTRACT. The notion of a special α-limit point is defined. For maps of the interval, it is shown that a point is a special α-limit point if and only if it is an element of the attracting center.

1. Introduction

Our main result is that for continuous self-maps of an interval, the attracting center and the set of special α-limit points coincide. Also, combining the work in this paper with that of Xiong in [9], we will obtain a necessary and sufficient condition for the existence of a periodic point with period not a power of two.

Throughout this paper, f will be a continuous self-map of an interval I. For every positive integer n, f^n will denote the function f composed with itself n times. Using the forward orbit of a point x, the ω-limit set $\omega(x)$ of x is defined to be the collection of all limit points of the sequence $(f^n(x))_{n=1}^{\infty}$. Elements of $\omega(x)$ are called ω-limit points. A point z is said to be recurrent if $z \in \omega(z)$.

In [9] the α-limit set $\alpha(x)$ is defined for self-maps of the interval. In this paper we study the special α-limit set of a point x and denote it by $s\alpha(x)$. A point y is an element of the set $s\alpha(x)$ provided there exists a sequence of positive integers $(n(i))_{i=1}^{\infty}$ and a sequence of points $(y_i)_{i=0}^{\infty}$ such that

1. $x = y_0$,
2. $f^{n(i)}(y_i) = y_{i-1}$,
3. $\lim_{i \to \infty} y_i = y$.

Note that if such a sequence exists then y is an element of $s\alpha(y_i)$ for every i.

In order to state our theorem, we must define what is called the attracting center of a dynamical system. For a subset Y of I, define $\Lambda(Y) = \bigcup_{x \in Y} \omega(x)$. Let $\Lambda^1 = \Lambda(I)$. For every $n > 1$, inductively define $\Lambda^n = \Lambda(\Lambda^{n-1})$. The attracting center Λ^∞ is then the intersection of the sets Λ^n.

Received by the editors November 19, 1990 and, in revised form, April 17, 1991.
1991 Mathematics Subject Classification. Primary 26A18, 58F08; Secondary 54H20, 58F13.

The results in this paper are from the author's Ph.D. thesis, which was completed under the supervision of Professor Richard J. O'Malley at the University of Wisconsin-Milwaukee.

This paper was presented at the South Bend, Indiana, AMS Meeting, March 15, 1991.

©1992 American Mathematical Society
0002-9939/92 $1.00 + .25$ per page

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use
Theorem. Suppose that f is a continuous self-map of an interval I. Then the following are equivalent:

1. $x \in s\alpha(y)$ for some y,
2. $x \in s\alpha(x)$,
3. $x \in \Lambda^\infty$.

Combining this theorem with the work of Xiong [9], we obtain the following corollary. The period of a periodic point x is the least n such that $f^n(x) = x$.

Corollary. The following are equivalent:

1. Some point y that is not recurrent is a special α-limit point.
2. Some periodic point has period that is not a power of two.

A weaker form of recurrence than that of being an ω-limit point is that of being a nonwandering point. Let $y \in I$. Then y is a nonwandering point if for every open neighborhood V_y of y, $V_y \cap f^m(V_y) \neq \emptyset$ for some m.

A pointwise definition of the set of nonwandering points can be obtained by considering the backwards orbit of a point. A point y is an element of $\alpha(x)$ provided that a strictly increasing sequence of positive integers $(n(i))_{i=1}^\infty$ and a sequence of points $(y_i)_{i=1}^\infty$ can be found such that

1. $f^{n(i)}(y_i) = x$,
2. $\lim_{i \to \infty} y_i = y$.

Elements of $\alpha(x)$ are called α-limit points. The sets of all α-limit points, in general, strictly contains the set of nonwandering points. A pointwise definition of the set Ω of nonwandering points, however, can be obtained using

Proposition A [6]. If f is a self-map of an interval I then $x \in \Omega$ if and only if $x \in \alpha(x)$.

We now provide an example of a self-map of $[0, 4]$ for which $\alpha(1) \neq s\alpha(1)$. A smooth version of this example is used in [7] to show that the point 1 is a nonwandering point but not an ω-limit point. We will see later that if y is a nonwandering point that is not an ω-limit point then $y \in \alpha(y) - s\alpha(y)$.

Example.

$$f(x) = \begin{cases} x + 2 & \text{if } x \in [0, 1), \\ 3x & \text{if } x \in [1, \frac{4}{3}), \\ -\frac{9}{8}x + 10 & \text{if } x \in [\frac{4}{3}, 2), \\ 2x - 3 & \text{if } x \in [2, \frac{7}{2}), \\ 4 & \text{if } x \in [\frac{7}{2}, 4]. \end{cases}$$

It is clear from the graph of the function f that there is a strictly increasing sequence of points $(w_i)_{i=1}^\infty$ with $w_1 = 2$, $w_i \in (2, 3)$ and $f(w_i) = w_{i-1}$ for $i > 1$. For every $i \geq 1$ there is a $z_i \in [0, 1]$ with $f(z_i) = w_i$. Thus $f^i(z_i) = 1$ and $\lim_{i \to \infty} z_i = 1$, hence $1 \in \alpha(1)$. The point 1, however, cannot be a special α-limit point since $f^n([1, \frac{14}{9}]) = [3, 4]$ for every $n > 0$ and $f^{-1}([0, 1]) = \emptyset$. To see this, one needs only to realize that if 1 were a special α-limit point, we could find points y_1, y_2, and y_3 all elements of $(0, \frac{14}{9})$ and integers $n(3)$ and $n(2)$ with $f^n(y_3) = y_2$ and $f^n(y_2) = y_1$.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use
2. Preliminaries

A point \(y \) is said to be a \(\gamma \)-limit point of \(x \) if \(y \in \omega(x) \cap \alpha(x) \). Let \(\gamma(x) = \omega(x) \cap \alpha(x) \) and \(\Gamma = \bigcup_{x \in I} \gamma(x) \). It follows from Proposition A that the set of recurrent points \(R \) is contained in the set \(\Gamma \). In his investigation of the set \(\Lambda^\infty \), Xiong [9] proves the following theorem.

Theorem A. Suppose that \(f \) is a continuous self-map of an interval. Then

1. \(\Gamma = \Lambda^2 = \Lambda^\infty \subseteq \overline{P} \), where \(P \) is the set of periodic points;
2. \(R = \Gamma \) if and only if the period of every periodic point is a power of 2, where \(R \) is the set of all recurrent points.

A function \(f \) displays a horseshoe if there are disjoint closed intervals \(J \) and \(K \) in the interval and a positive integer \(n \) such that \(f^n(J) \supset J \), \(f^n(K) \supset K \), \(f^n(J) \supset J \), and \(f^n(K) \supset K \). The content of statement (2) of Theorem A is that \(\Gamma \) strictly contains \(R \) if and only if \(f \) displays a horseshoe. In general, the following set relation holds for self-maps of the interval

\[P \subseteq R \subseteq \Gamma \subseteq \overline{P} \subseteq \Lambda^1 \subseteq \Omega. \]

In the above example, the set \(\Lambda^1 \) is strictly contained in \(\Omega \). For an example of a function where \(P \) is strictly contained in \(\Lambda^1 \) see [2]. In [3] an example of a function with \(\Gamma \neq \overline{P} \) is constructed.

3. Proof of the theorem

We will prove several lemmas from which the theorem will follow immediately.

Lemma 1. If \(x \in s\alpha(y) \) then \(f^n(x) \in s\alpha(y) \) for every \(n \) and \(\omega(x) \subseteq s\alpha(y) \).

Proof. Suppose that \(x \in s\alpha(y) \). Then we can find \(y_i \) with \(\lim_{i \to \infty} y_i = x \) and \(n(i) > 0 \) such that \(f^{n(i)}(y_i) = y_i \) and \(f^{n(1)}(y_1) = y \).

Consider the sequence

\[(y, f^{n(1)-1}(y_1), \ldots, y_1, f^{n(2)-1}(y_2), \ldots, y_2, f^{n(3)-1}(y_3), \ldots) \]

\[\equiv (y, z_1, z_2, z_3, \ldots). \]

Note that if \(m < \sum_{i=1}^{j} n(i) \) then \(f^m(y_j) \) is a term of the sequence \((z_i)_{i=1}^{\infty} \). One can see that any limit point of the sequence \((z_i)_{i=1}^{\infty} \) is an element of \(s\alpha(y) \).

Let \(z \in \{ f(x), f^2(x), \ldots \} \cup \omega(x) \) and let \(\varepsilon > 0 \) be given. Then we can find an \(m > 0 \) with \(f^m(x) \in (z - \varepsilon, z + \varepsilon) \). The function \(f^m \) is continuous and \(\lim_{i \to \infty} y_i = x \). Thus for some \(N > 0 \) if \(j > N \) then \(f^m(y_j) \in (z - \varepsilon, z + \varepsilon) \). If we take \(j > \max(N, m) \) then \(m < j \leq \sum_{i=1}^{j} n(i) \). Thus \(f^m(y_j) \in (z - \varepsilon, z + \varepsilon) \) and is a term of the sequence \((z_i)_{i=1}^{\infty} \). It follows that \(z \) is a limit point of the sequence \((z_i)_{i=1}^{\infty} \). \(\square \)

To state Lemma 2, we develop some notation. We will use the symbols \(\alpha_R(x) \) (resp., \(\alpha_L(x) \)) to denote the set of all points \(y \) such that there exists a sequences \((n(i))_{i=1}^{\infty} \) and \((x_i)_{i=1}^{\infty} \) with \(\lim_{i \to \infty} n(i) = \infty \), \(\lim_{i \to \infty} x_i = y \), \(f^{n(i)}(x_i) = x \), and \(y < x_i \) (resp., \(x_i < y \)) for every \(i > 0 \).

Lemma 2. (1) If for some \(\varepsilon > 0 \), \(x \in \alpha_L(y) \) for every \(y \in (x - \varepsilon, x) \), then for every \(y \in (x - \varepsilon, x) \), \(x \in \alpha_R(y) \).
(2) If for some $\varepsilon > 0$, $x \in \alpha_R(y)$ for every $y \in (x, x + \varepsilon)$, then for every $y \in (x, x + \varepsilon)$, $x \in s\alpha(y)$.

Proof. We will prove (1). Let $y \in (x - \varepsilon, x)$. Since $x \in \alpha_L(y)$, we can find $y_1 \in (x - \varepsilon/2, x)$ and $n(1) > 0$, with $f^{n(1)}(y_1) = y$. By hypothesis, $x \in \alpha_L(y_1)$; thus we can find $y_2 \in (x - \varepsilon/2^2, x)$ and $n(2) > 0$, with $f^{n(2)}(y_2) = y_1$. Continuing in this way, we obtain a sequence $(y_i)_{i=1}^\infty$ and $n(i) > 0$, with $y_i \in (x - \varepsilon/2^i, x)$ and $f^{n(i)}(y_i) = y_{i-1}$. □

Before proceeding any further, we need the definitions of almost periodic points and minimal sets. If given an open set V_y containing y, one can find an integer $n > 0$ such that for any integer $q > 0$ there is an integer r, $q \leq r \leq q + n$ with $f^r(y) \in V_y$, then y is said to be almost periodic. If for every $x \in \omega(y)$ we have that $\omega(x) = \omega(y)$, then $\omega(y)$ is said to be a minimal set. A well-known fact is that for compact metric spaces a point y is almost periodic if and only if $y \in \omega(y)$ and $\omega(y)$ is a minimal set.

Lemma 3. If x is almost periodic then $x \in s\alpha(x)$.

Proof. Since x is almost periodic, $x \in \omega(x)$ and $\omega(x)$ is a minimal set. Since $f(\omega(x)) = \omega(x)$, we can find a sequence of points $(z_i)_{i=1}^\infty$ with $z_i \in \omega(x)$, $f(z_i) = z_{i-1}$, and $f(z_1) = x$. Let y be a limit point of this sequence. Then $y \in s\alpha(x)$ and, since $\omega(x)$ is a closed set, $y \in \omega(x)$. Since in this case $\omega(x)$ is a minimal set, $x \in \omega(y)$. It follows from Lemma 1 that $x \in s\alpha(x)$. □

Let Y be a subset of I. We will denote the closure of Y by \overline{Y}. A point z is called a right-side (resp., left-side) accumulation point of Y if for every $\varepsilon > 0$, $(z, z + \varepsilon) \cap Y \neq \emptyset$ (resp., $(z - \varepsilon, z) \cap Y \neq \emptyset$). The right-side closure \overline{Y}_R (resp., left-side closure \overline{Y}_L) is the union of Y and the set of right-side (resp., left-side) accumulation points of Y.

In Lemma 4 bilateral limit points of periodic points are considered. We will see that such points are special α-limit points. If in addition the point x in question is not almost periodic, then we show that x is the end point of interval J with $x \in s\alpha(y)$ for every $y \in J$. In either case we will see that $x \in s\alpha(x)$.

Lemma 4. If $x \in \overline{P}_L \cap \overline{P}_R$ then $x \in s\alpha(x)$. If in addition x is not almost periodic, then for some $\varepsilon > 0$, either $x \in s\alpha(y)$ for every $y \in (x - \varepsilon, x]$, or $x \in s\alpha(y)$ for every $y \in [x, x + \varepsilon)$.

Proof. According to Lemma 3, we may assume that x is not almost periodic. If for every $\varepsilon > 0$ we could find an $n > 0$ such that $f^{nk}(x) \in (x - \varepsilon, x + \varepsilon)$ for every k, then x would be almost periodic. Thus we can find an $\varepsilon > 0$ such that if $n > 0$ is fixed then for some $k > 0$, $f^{nk}(x) \notin (x - \varepsilon, x + \varepsilon)$.

Fix such an $\varepsilon > 0$. By our hypothesis, $\lim_{i \to \infty} p_i = x$, $\lim_{i \to \infty} q_i = x$ with $p_i < x$ and $x < q_i$ for two sequences of periodic points $(p_i)_{i=1}^\infty$ and $(q_i)_{i=1}^\infty$. Furthermore, we may assume that $p_i \in (x - \varepsilon, x)$ and $q_i \in (x, x + \varepsilon)$. Let $n(i)$ be the period of p_i and $m(i)$ the period of q_i. Let $l(i) = n(i)m(i)$. It follows from our choice of ε that we can find $k(i) > 0$ with $f^{l(i)k(i)}(x) \notin (x - \varepsilon, x + \varepsilon)$.

Suppose by choosing a subsequence, if needed, that $f^{l(i)k(i)}(x) < x - \varepsilon$ for every i. Since the period of p_i is $n(i)$, $f^{l(i)k(i)}(p_i) = p_i$; thus

\[(x - \varepsilon, p_i] \subseteq f^{l(i)k(i)}([p_i, x)).\]

Let $y \in (x - \varepsilon, x)$. We will now show that $x \in s\alpha(y)$. Since $\lim_{i \to \infty} p_i = x$, we can find a positive integer $i(1)$ such that $x - \varepsilon < y < p_{i(1)} < x$. It follows
from (*) that there exists \(z_{i(1)} \in (p_{i(1)}, x) \) with \(f^{l(i(1))k(i(1))}(z_{i(1)}) = y \). Since \(z_{i(1)} \in (p_{i(1)}, x) \), we can find a positive integer \(i(2) \) with

\[
x - \varepsilon < y < p_{i(1)} < z_{i(1)} < p_{i(2)} < x.
\]

It follows from (*) that there exists \(z_{i(2)} \in (p_{i(2)}, x) \) with \(f^{l(i(2))k(i(2))}(z_{i(2)}) = z_{i(1)} \). Continuing in this way, it is possible to find \(i(j), p_{i(j)}, \) and \(z_{i(j)} \) with

\[
x - \varepsilon < y < p_{i(1)} < z_{i(1)} < p_{i(2)} < \cdots < p_{i(j)} < z_{i(j)} \cdots < x
\]

such that

\[
f^{l(i(j))k(i(j))}(z_{i(j)}) = z_{i(j-1)}.
\]

Since \(\lim_{j \to \infty} p_i = x \), we have that \(\lim_{j \to \infty} z_{i(j)} = x \). Thus \(x \in sa(y) \).

To finish the proof of the lemma it suffices to show that we can find a point \(z \in (x - \varepsilon, x) \) and an \(n > 0 \) with \(f^n(z) = x \). The argument that we will give here is taken from the proof of Proposition C in [9]. Let \(g = f^{n(1)} \) and \(L = [p_1, x] \). Then since \(g(p_1) = p_1 \), \(K = L \cup g(L) \cup g^2(L) \cup \cdots \) is an interval. Let \(l(j) \) denote the period of \(p_j \) with respect to \(g \). For \(k = 1, 2, \) or 3 suppose that a subsequence of \(g^{l(1) - k}(p_1)g^{l(2) - k}(p_2) \cdots g^{l(j) - k}(p_j) \cdots \) converges to \(u_k \in K \). It is clear that \(g^{k'}(u_k) = x \). If \(u_{k'} = u_k^{k''} \) for some \(k' < k'' \), then

\[
g^{k'' - k'}(x) = g^{k'' - k'}(g^{k'}(u_{k'})) = g^{k''}(u_{k'}) = g^{k''}(u_{k''}) = x.
\]

However, \(x \) is by assumption not periodic, thus we must have that \(u_1, u_2, \) and \(u_3 \) are distinct points in \(K \). Since \(K \) is an interval, \(u_k \in K \) for some \(k \). Hence for some point \(z \in L \) and \(n \geq 0, g^n(z) = u_k \). Thus \(g^{n+k}(z) = x \). \(\square \)

Note that the last argument in the proof of Lemma 4 shows that for points \(x \in \overline{P}_L - P \) (resp., \(\overline{P}_R - P \)), we have \(x \in \alpha_L(x) \) (resp., \(\alpha_R(x) \)). We will use the symbols \(\omega_L(x) \) (resp., \(\omega_L(x) \)) to denote the set of right-side (resp., left-side) accumulation points of the set \(\{f^n(x)\}_{n=1}^{\infty} \).

Lemma 5. If \(x \in R \) then \(x \in sa(x) \).

Proof. Let \(x \in R \). If \(\omega(x) \) is a minimal set, then according Lemma 3, \(x \in sa(x) \).

We assume that \(\omega(x) \) is not a minimal set. Applying Lemma 3 of [1] to the compact set \(\omega(x) \), we have that the set \(A = \{ y | \omega(y) = \omega(x) \} \cap \omega(x) \) is an uncountable set. Let \(\Delta \) denote the symmetric difference of sets. Since \(\overline{P}_L \Delta \overline{P}_R \) and \(\overline{\omega}_L(x) \Delta \omega_R(x) \) are both countable, \(\overline{P}_L \cap \overline{P}_R \) (resp., \(\omega_L(x) \cap \omega_R(x) \)) is the complement of a countable set in \(\overline{P} \) (resp., \(\omega(x) \)); since \(\omega(x) \subseteq \overline{P} \), it follows that

\[
\omega_L(x) \cap \omega_R(x) \subseteq \overline{P}_L \cap \overline{P}_R
\]

is the compliment of a countable set in \(\omega(x) \). But then \(A \), being an uncountable subset of \(\omega(x) \), must intersect the set \(\omega_L(x) \cap \omega_R(x) \cap \overline{P}_L \cap \overline{P}_R \). Let \(y \) be a point from \(A \) in this intersection.

Since \(\omega(x) = \omega(y) \) and \(\omega(x) \) is not a minimal set, it must be that \(y \) is not almost periodic. Without loss of generality, by Lemma 4 we may choose an \(\varepsilon > 0 \) such that if \(z \in (y - \varepsilon, y] \) then \(y \in sa(z) \). Now \(y \in \omega_L(x) \); hence for some positive integer \(n \), \(f^n(x) \in (y - \varepsilon, y) \). Since the function \(f^n \) is continuous, for some \(\delta > 0 \)

\[
(\ast\ast) \quad f^n((x - \delta, x + \delta)) \subseteq (y - \varepsilon, y).
\]
Now \(R \subseteq \Omega \), so by Proposition A, \(x \in \alpha(x) \). Thus for some \(z \in (x - \delta, x + \delta) \) and \(m > n \), \(f^m(z) = x \). By (**), \(f^n(z) \in (y - \varepsilon, y) \), hence \(y \in \sigma(f^n(z)) \) and \(f^{m-n}(f^n(z)) = x \). It follows that \(y \in \sigma(x) \). Since \(x \in \omega(y) \), by Lemma 1, \(x \in \sigma(x) \). □

We consolidate our proof that (1) implies (2) implies (3) in our theorem into the proof of Proposition 1. Before we prove Proposition 1, two well-known results must be stated. The first, Lemma B is a description of the dynamical behavior that can occur on subintervals of \(I \) containing no periodic points. The second, Proposition C, is a description of a situation under which one can conclude that a point is an element of \(\omega_R(x) \) (resp., \(\omega_L(x) \)) for some \(x \). For a proof of Lemma B see [5] and for Proposition C see [4]. Proposition C is due to Sharkovskii in [8].

Lemma B. Let \(J \) be a subinterval of \(I \) that does not contain any periodic points. If \(x \) and \(y \) are elements of \(J \) and if for some \(n \) and \(m \) both \(f^n(x) \) and \(f^m(y) \) are elements of \(J \), then either \(f^n(x) < x \) and \(f^m(y) < y \), or \(f^n(x) > x \) and \(f^m(y) > y \).

Proposition C. If for every \(\varepsilon > 0 \), an \(n > 0 \) can be found with

\[
(c, c + \varepsilon) \cap f^n((c, c + \varepsilon)) \neq \emptyset
\]

(resp., \((c - \varepsilon, c) \cap f^n((c - \varepsilon, c)) \neq \emptyset \)), then \(c \in \omega_R(y) \cup P \) (resp., \(c \in \omega_L(y) \cup P \)) for some \(y \in I \).

Proposition 1. If \(x \in \sigma_\alpha(y) \) for some \(y \) then \(x \in \sigma(x) \) and \(x \in T \).

Proof. Let \(x \in \sigma_\alpha(y) \). Since \(R \subseteq \Gamma \), by Lemma 5 we may assume that \(x \) is not recurrent. Fix an \(\varepsilon > 0 \) such that \(f^n(x) \notin (x - \varepsilon, x + \varepsilon) \) for every \(n > 0 \). As \(x \in \sigma_\alpha(y) \), we can find a sequence \((y_i)_{i=1}^\infty\) and \(n(i) > 0 \) with \(\lim_{i \to \infty} y_i = x \) and \(f^{n(i)}(y_i) = y_{i-1} \). By choosing a subsequence of the sequence \((y_i)_{i=1}^\infty\), we may assume that \(y_i \in (x - \varepsilon, x) \) for every \(i > 0 \).

Claim 1. The point \(x \) is an element of \(\overline{P_L} - P \) and hence, as noted above, an element of \(\alpha_L(x) \).

Proof of Claim 1. Let \(\delta > 0 \) be given. It is possible to find a \(j > 0 \) with \(y_j \) and \(y_{j-1} \) both elements of \((x - \delta, x) \) and hence, \((x - \delta, x) \cap f^{n(j)}((x - \delta, x)) \neq \emptyset \). Since \(x \) is not periodic by Proposition C, \(x \in \omega_L(y) \) for some \(y \). Now if, on the contrary, \(x \notin \overline{P_L} \), then we can find an \(\varepsilon > 0 \) such that \((x - \varepsilon, x) \cap P = \emptyset \). Since \(x \in \omega_L(y) \), we can assume that \(y \in (x - \varepsilon, x) \). Thus for some \(n > 0 \), \(x - \varepsilon < y < f^n(y) < x \). Since \(\lim_{i \to \infty} y_i = x \), we can find an integer \(j \) with \(x - \varepsilon < y_{j-1} < y_j < x \). This is, however, a contradiction to Lemma B as \(f^{n(j)}(y_j) = y_{j-1} \). Thus \(x \in \overline{P_L} - P \) and hence \(x \in \alpha_L(x) \).

Claim 2. For some \(\delta > 0 \), \(x \in \sigma_\alpha(y) \) for every \(y \in (x - \delta, x) \).

Proof of Claim 2. To prove this claim we first define the integers \(M(k, j) \) for every \(k > 0 \) and \(j > 0 \), according to the equation \(M(k, j) = \sum_{i=1}^{j} n(k + i) \). Since \(f^{n(i)}(y_i) = y_{i-1} \), we have that \(f^{M(k, j)}(y_{k+j}) = y_k \). We consider two cases.
Case 1. For some \(k > 0 \), \(x + \varepsilon < f^{M(k,j)}(x) \) for an infinite number of \(j \). Fix such a \(k > 0 \). Let \((h(i))_{i=1}^{\infty}\) be an increasing subsequence of positive integers such that \(x < f^{M(k,h(i))}(x) \) for every \(i > 0 \). In this case we will show that for every \(y \in (y_k, x) \), \(x \in s\alpha(y) \). Since \(x \in \alpha_L(x) \), by Lemma 2 it suffices to show that \(x \in \alpha_L(y) \) for every \(y \in (y_k, x) \). So let \(y \in (y_k, x) \). For every \(i > 0 \),

\[
[y_k, f^{M(k,h(i))}(x)] \subseteq f^{M(k,h(i))}([y_k+h(i), x]).
\]

Hence for every \(i > 0 \) we can find a point \(z_i \in [y_k+h(i), x] \) with \(f^{M(k,h(i))}(z_i) = y \). Since \(\lim_{i \to \infty} y_{k+h(i)} = x \), it follows that \(x \in \alpha_L(y) \).

Case 2. For every \(k > 0 \), we can find a positive integer \(M(k) \) so that if \(j > M(k) \) then \(f^{M(k,j)}(x) < x - \varepsilon \). In this case we will prove that for \(y \in (x - \varepsilon, x) \), \(x \in \alpha_L(y) \). Let \(y \in (x - \varepsilon, x) \). We can find a \(k > 0 \) with \(y < y_k \). By our assumption for \(j > M(k) \), we have

\[
f^{M(k,j)}(x) < x - \varepsilon < y < y_k.
\]

It follows that for every \(j > M(k) \) we can find a \(z_j \in [y_{k+j}, x] \) with \(f^{M(k,j)}(z_j) = y \). As in Case 1, since \(\lim_{j \to \infty} y_{k+j} = x \), \(x \in \alpha_L(y) \). By Lemma 2 and the fact that \(x \in \alpha_L(x) \), we see that for every \(y \in (x - \varepsilon, x) \), \(x \in s\alpha(y) \). This completes the proof of the claim.

To complete the proof of the lemma we must show that \(x \in \Gamma \). Let \(\delta > 0 \) be such that for every \(y \in (x - \delta, x) \), \(x \in \alpha_L(y) \). According to the proof of Claim 1, \(x \in \omega_L(y) \) for some \(y \in (x - \delta, x) \), and hence \(x \in \omega_L(y) \cap s\alpha(y) \). Since \(s\alpha(y) \subseteq \alpha(y) \), \(x \in \Gamma \).

The following lemma will complete the proof of the theorem.

Lemma 6. If \(x \in \Gamma \) then \(x \in s\alpha(x) \).

Proof. If \(x \in R \) then, by Lemma 5, \(x \in s\alpha(x) \). According to Xiong in [9],

\[
\Gamma = \left(\bigcup_{y \in I} \omega_L(y) \cap \alpha_L(y) \right) \cup \left(\bigcup_{y \in I} \omega_R(y) \cap \alpha_R(y) \right) \cup P.
\]

Thus we assume that \(x \notin R \) and that \(y \) has been chosen with \(x \in \omega_L(y) \cap \alpha_L(y) \). Let \(\varepsilon > 0 \) be chosen so that if \(n > 0 \) then \(f^n(x) \notin (x - \varepsilon, x + \varepsilon) \).

Let \((y_i)_{i=1}^{\infty}\) and \((z_i)_{i=1}^{\infty}\) be sequences with \(y_i \in (x - \varepsilon, x) \), \(z_i \in (x - \varepsilon, x) \), \(f^n(y_i) = y_i \), \(f^n(z_i) = y_i \), \(\lim_{i \to \infty} n(i) = \infty \), and \(\lim_{i \to \infty} m(i) = \infty \). Let \(L(i, j) = m(i) + n(j) \). Then \(f^{L(i,j)}(z_i) = y_j \) for all \(i > 0 \) and \(j > 0 \).

Case 1. There exists \(j > 0 \) such that \(f^{L(i,j)}(x) > x + \varepsilon \) for an infinite number of \(i \). Let \((h(i))_{i=1}^{\infty}\) be an increasing subsequence of positive integers such that \(f^{L(h(i),j)}(x) > x + \varepsilon \). Since \(f^{L(h(i),j)}(z_{h(i)}) = y_j \), it follows that

\[
(y_j, x + \varepsilon) \subseteq f^{L(h(i),j)}([z_{h(i)}, x]).
\]

To finish the proof by Lemmas 2 and Proposition 1, it suffices to show that for every \(y \in (y_j, x) \), \(x \in \alpha_L(y) \).

Let \(y \in (y_j, x) \). For every \(i > 0 \), there exists \(w_i \in (z_{h(i)}, x) \) with \(f^{L(h(i),j)}(w_i) = y \). It follows that \(x \in \alpha_L(y) \).

Case 2. If \(j > 0 \) then there exists an integer \(M(j) \) such that for \(i > M(j) \), \(f^{L(i,j)}(x) < x - \varepsilon \).
To finish the proof in this case, we will show that if $y \in (x - \varepsilon, x)$ then, $x \in \alpha_L(y)$. Let $y \in (x - \varepsilon, x)$. Since $\lim_{i \to \infty} y_i = x$, we can find a $j > 0$ with $x - \varepsilon > y < y_j$. For every $i > M(j)$ we have
\[(x - \varepsilon, y_j] \subseteq f^{L(i,j)}([z_i, x]).\]
Hence for every $i > M(j)$, we can find $w_i \in (z_i, x)$ with $f^{L(i,j)}(w_i) = y$. It follows that $x \in \alpha_L(y)$. □

4. Acknowledgments
The author would like to thank Professor Richard J. O’Malley and the referee for their many useful comments.

References

2. L. Block and E. Coven, ω-limit sets for maps of the interval, Ergodic Theory Dynamical Systems 6 (1986), 335–344.

Department of Mathematics, Bradley University, Peoria, Illinois 61625
E-mail address: herol@bradley.bradley.edu