Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Noether normalizations for local rings of algebraic varieties


Author: Kazuhiko Kurano
Journal: Proc. Amer. Math. Soc. 116 (1992), 905-910
MSC: Primary 13B22; Secondary 13H05, 14H20
DOI: https://doi.org/10.1090/S0002-9939-1992-1100658-3
MathSciNet review: 1100658
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: When $ D$ is a regular subring of $ A$ such that the inclusion map is finite, $ D$ is called a Noether normalization of $ A$. We will prove the existence of Noether normalizations of $ A$, when $ A$ is a local ring of a one-dimensional algebraic variety. Furthermore we will give a criterion for the existence and interesting examples.


References [Enhancements On Off] (What's this?)

  • [1] R. Hartshorne, Algebraic geometry, Graduate Texts in Math., Springer-Verlag, Berlin and New York, 1977. MR 0463157 (57:3116)
  • [2] M. Nagata, On rational surfaces I. Irreducible curves of arithmetic genus 0 or 1, Mem. Coll. Sci. Kyoto (A) 32 (1960), 351-370. MR 0126443 (23:A3739)
  • [3] M. Raynaud, Anneaux locaux Hensèliens, Lecture Notes in Math., vol. 169, Springer-Verlag, Berlin and New York, 1970. MR 0277519 (43:3252)
  • [4] O. Zariski, On Castelnuovo's criterion of rationality $ {p_a} = {P_2} = 0$ of an algebraic surface, Illinois J. Math. 2 (1958), 303-315. MR 0099990 (20:6426)
  • [5] O. Zariski and P. Samuel, Commutative algebra, vol. II, Springer-Verlag, New York, 1960. MR 0120249 (22:11006)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 13B22, 13H05, 14H20

Retrieve articles in all journals with MSC: 13B22, 13H05, 14H20


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1992-1100658-3
Article copyright: © Copyright 1992 American Mathematical Society

American Mathematical Society