Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)



Noether normalizations for local rings of algebraic varieties

Author: Kazuhiko Kurano
Journal: Proc. Amer. Math. Soc. 116 (1992), 905-910
MSC: Primary 13B22; Secondary 13H05, 14H20
MathSciNet review: 1100658
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: When $ D$ is a regular subring of $ A$ such that the inclusion map is finite, $ D$ is called a Noether normalization of $ A$. We will prove the existence of Noether normalizations of $ A$, when $ A$ is a local ring of a one-dimensional algebraic variety. Furthermore we will give a criterion for the existence and interesting examples.

References [Enhancements On Off] (What's this?)

  • [1] Robin Hartshorne, Algebraic geometry, Springer-Verlag, New York-Heidelberg, 1977. Graduate Texts in Mathematics, No. 52. MR 0463157
  • [2] Masayoshi Nagata, On rational surfaces. I. Irreducible curves of arithmetic genus 0 or 1, Mem. Coll. Sci. Univ. Kyoto Ser. A Math. 32 (1960), 351–370. MR 0126443
  • [3] Michel Raynaud, Anneaux locaux henséliens, Lecture Notes in Mathematics, Vol. 169, Springer-Verlag, Berlin-New York, 1970 (French). MR 0277519
  • [4] Oscar Zariski, On Castelnuovo’s criterion of rationality 𝑝ₐ=𝑃₂=0 of an algebraic surface, Illinois J. Math. 2 (1958), 303–315. MR 0099990
  • [5] Oscar Zariski and Pierre Samuel, Commutative algebra. Vol. II, The University Series in Higher Mathematics, D. Van Nostrand Co., Inc., Princeton, N. J.-Toronto-London-New York, 1960. MR 0120249

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 13B22, 13H05, 14H20

Retrieve articles in all journals with MSC: 13B22, 13H05, 14H20

Additional Information

Article copyright: © Copyright 1992 American Mathematical Society