RIGIDITY THEOREMS FOR NONPOSITIVE
EINSTEIN METRICS

ZHONGMIN SHEN

(Communicated by Jonathan M. Rosenberg)

Abstract. In this paper we study the following problem: When must a complete Einstein metric \(g \) on an \(n \)-manifold with \(\text{Ric} = (n - 1)\lambda g \), \(\lambda \leq 0 \), be a metric of constant curvature \(\lambda \)?

1. Introduction and main results

Let \(g \) be a complete riemannian metric on an \(n \)-manifold \(M \). Denote by \(R \) the curvature tensor of \(g \). The Ricci curvature \(\text{Ric} \) is then defined as

\[
\text{Ric}(x, y) = \sum_{i=1}^{n} g(R(x, e_i)e_i, y), \quad x, y \in T_pM,
\]

where \(\{e_1, \ldots, e_n\} \) is an orthonormal basis for \(T_pM \). The metric \(g \) is said to be Einstein if the Ricci curvature is constant, i.e.,

\[
\text{Ric} = (n - 1)\lambda g
\]

for some constant \(\lambda \). \(\lambda \) is called the Einstein constant of \(g \). It is clear that in dimension three the metric \(g \) is Einstein with \(\text{Ric} = (n - 1)\lambda g \) if and only if it has constant curvature \(\lambda \), i.e.,

\[
R(x, y)z = \lambda(g(y, z)x - g(x, z)y), \quad x, y, z \in T_pM.
\]

In higher dimensions, this is not the case. One may ask if an Einstein metric has constant curvature whenever it has almost constant curvature in a certain sense. From now on we always assume that \(g \) is a complete Einstein metric with Einstein constant \(\lambda \). It is natural to consider the new tensor \(\hat{R} \), defined

Received by the editors January 8, 1991 and, in revised form, March 19, 1991.
1991 Mathematics Subject Classification. Primary 53C25; Secondary 53C20.
Key words and phrases. Einstein metrics, rigidity, Sobolev inequality, the first eigenvalue, diameter, volume.
Research at MSRI supported in part by NSF Grant DMS-8505550.
\[
\hat{R}(x, y)z = R(x, y)z - \lambda(g(y, z)x - g(x, z)y), \quad x, y, z \in T_p M.
\]

Denote by \(\sigma \) the pointwise norm of \(\hat{R} \), defined by

\[
\sigma = \sqrt{\sum_{ijkl} g(\hat{R}(e_i, e_j)e_k, e_l)^2},
\]

where \(\{e_1, \ldots, e_n\} \) is an orthonormal basis for \(T_p M \). By a formula in [H], one can easily show that \(\sigma \) satisfies

\[
(1) \quad \Delta \sigma + c_0(n)\sigma^2 - 2(n - 1)\lambda \sigma \geq 0
\]

in the sense of distribution, where \(c_0(n) \) is a positive constant depending only on \(n \) and \(\Delta \) denotes the Laplace-Beltrami operator (in \(\mathbb{R}^n \), \(\Delta = \sum_{i=1}^{n} \partial^2 / \partial x_i^2 \)).

In the case of \(\lambda > 0 \), Myers's Theorem (cf., e.g., [CE]) tells us that the manifold is closed. Thus by integrating (1), one obtains

Theorem 1 (Berger [B]). Given \(n \), there is a small constant \(\varepsilon = \varepsilon(n) > 0 \) depending only on \(n \) such that if a complete Einstein metric \(g \), with \(\lambda > 0 \), on an n-manifold satisfies \(\sigma \leq \lambda \varepsilon \), then \(\sigma \equiv 0 \), i.e., \(g \) has constant curvature \(\lambda \).

In [S] the author gives an \(L^2 \)-version of Theorem 1, which says that if

\[
\int \sigma^2 \leq \lambda^2 \text{vol}(M)\varepsilon
\]

for some small \(\varepsilon = \varepsilon(n) > 0 \), depending only on \(n \), where \(\text{vol}(M) \) denotes the volume of \((M, g) \), then \(\sigma \equiv 0 \).

In the case of \(\lambda \leq 0 \), the manifold can be compact or noncompact. First let us consider the case \(\lambda = 0 \). In this case, the following fact is known: There is a small constant \(\varepsilon = \varepsilon(n) > 0 \) depending only on \(n \), if a Ricci-flat metric \(g \) on a closed \(n \)-manifold satisfies

\[
(2) \quad \sigma \cdot \text{dia}(M)^2 \leq \varepsilon,
\]

where \(\text{dia}(M) \) denotes the diameter of \(g \), then \(\sigma \equiv 0 \), i.e., \(g \) is flat. The proof of this fact is trivial. By a theorem of Gromov [G], any almost flat manifold is aspherical, i.e., its universal cover is diffeomorphic to \(\mathbb{R}^n \). Thus for a sufficiently small \(\varepsilon = \varepsilon(n) \), (2) implies that the universal cover \(\tilde{M} \) is diffeomorphic to \(\mathbb{R}^n \). On the other hand, by the Cheeger-Gromoll's Splitting Theorem (cf. [CG]), \(\tilde{M} \) with the induced metric \(\tilde{g} \) is isometric to a riemannian product \(N \times \mathbb{R}^k \) for some closed riemannian manifold \(N \). Thus \(N \) must be a point and \(\tilde{g} \) is flat. Therefore \(g \) is flat. This argument in fact shows that all nonnegatively Ricci-curved aspherical manifolds are flat. By a theorem of Fukaya-Yamaguchi [FY], if \(\text{dia}(M) \leq D \), then condition (2) can be replaced by \(-1 \leq K_g \leq \varepsilon \) for a small number \(\varepsilon = \varepsilon(n, D) > 0 \), where \(K_g \) denotes the sectional curvature of \(g \).

In §2 we will prove an \(L^2 \)-version of the above fact, that is,
Theorem 2. Given n, there is a small constant $\varepsilon = \varepsilon(n) > 0$ depending only on n such that if a Ricci-flat metric g on a closed n-manifold satisfies

$$\int \sigma^\frac{n}{2} \leq \frac{\text{vol}(M)}{\text{dia}(M)^n} \varepsilon,$$

then $\sigma \equiv 0$, i.e., g is flat.

For complete Ricci-flat metrics on noncompact n-manifolds, some rigidity phenomena have been discovered (cf. [A2, Ba, S], etc.). Roughly speaking, if a complete Ricci-flat metric g has sufficiently small total curvature, i.e., there is a small $\varepsilon = \varepsilon(n) > 0$ such that if

$$\int M \left(\frac{1}{\sigma(x)} \right)^n \leq \nu_M^{n+1} \varepsilon,$$

where

$$\nu_M := \lim_{r \to +\infty} \frac{\text{vol}(B(p, r))}{\sigma_n r^n} > 0,$$

where σ_n denotes the volume of the unit ball in \mathbb{R}^n, then $\sigma \equiv 0$. It is worth mentioning that the result of Anderson [A2] does not require (3), but requires that $\nu_M \geq 1 - \varepsilon$ for a small $\varepsilon = \varepsilon(n) > 0$.

Now let us consider the case of $\lambda < 0$. The following theorem is first proved by Ye [Y, Theorem 2].

Theorem 3 ([Y]). Given n, $D > 0$, and $\lambda < 0$, there is a small constant $\varepsilon = \varepsilon(n, \sqrt{-\lambda} D) > 0$ such that if an Einstein metric g, with $\lambda < 0$, on a closed n-manifold satisfies $\text{dia}(M) \leq D$ and $\sigma \leq |\lambda| \varepsilon$, then $\sigma \equiv 0$, i.e., g has constant curvature λ.

In §3 we will prove the following $L^\frac{2}{3}$-version of Theorem 3.

Theorem 4. Given n, $D > 0$, and $\lambda < 0$, there is a small constant $\varepsilon = \varepsilon(n, \sqrt{-\lambda} D) > 0$ such that if an Einstein metric g, with $\lambda < 0$, on a closed n-manifold satisfies $\text{dia}(M) \leq D$ and

$$\int |\lambda|^\frac{2}{3} \text{vol}(M) \varepsilon,$$

then $\sigma \equiv 0$, i.e., g has constant curvature λ.

Complete Einstein metrics on noncompact n-manifolds with Einstein constant $\lambda < 0$ are still not completely understood. The Sobolev inequalities do not hold on such manifolds. Instead, the Poincaré inequalities hold, which will be used to prove the following

Theorem 5. Let g be a complete Einstein metric on a noncompact simply connected n-manifold with $\lambda < 0$. Suppose $n \geq 10$. There is a small constant $\varepsilon = \varepsilon(n) > 0$ such that if

(i) $\sigma \leq |\lambda| \varepsilon$ and
(ii) for some $p \in M$,
\[
\lim_{r \to +\infty} e^{-\delta_n |\varphi|^2} \int_{B(p, r)} \sigma^2 = 0,
\]
where $\delta_n = \frac{1}{4} \sqrt{(n-1) (n-9)} > 0$ and $B(p, r)$ denotes the geodesic ball of radius r around p, then $\sigma \equiv 0$, i.e., g has constant curvature $\lambda < 0$.

The proof of Theorem 5 will be given in §4. The author does not know the case of $n \leq 9$.

The author would like to thank S. Bando for bringing the problem of Theorem 5 to his attention. Thanks also to M. Anderson for many helpful discussions.

2. Closed Einstein manifolds with $\lambda = 0$

In this section we will prove Theorem 2. The argument given here is quite standard and similar to that given in Lemma 2.1 of [Al].

In §1 we have shown that every Ricci-flat metric satisfying (2) for some small $\varepsilon = \varepsilon(n)$ is flat. Throughout this section $M = (M, g)$ always denotes a closed Ricci-flat manifold of dimension $n \geq 4$ and $c_i(n)$’s denote constants depending only on n. In the case of $\lambda = 0$, (1) is equivalent to
\[
\Delta \sigma + c_0(n) \sigma^2 \geq 0
\]
in the sense of distribution. Recall that the following Sobolev inequality holds in M (cf. [Be] for references):
\[
\|f\|_{L^{2n/n-2}} \leq c_1(n) \text{vol}(M)^{-\frac{1}{2}} [\text{vol}(M)^{\frac{1}{2}}] \|\nabla f\|_2 + \|f\|_2
\]
for every $f \in C^\infty(M)$.

Multiply (4) by σ^{α} for $\alpha \geq 1$. Integration by parts gives
\[
c_0(n) \int \sigma^{\alpha+2} \geq \frac{4\alpha}{(\alpha + 1)^2} \int |\nabla \sigma^{\frac{\alpha+1}{2}}|^2 \geq \frac{1}{\alpha} \int |\nabla \sigma^{\frac{\alpha+1}{2}}|^2.
\]
Taking $f = \sigma^{\frac{\alpha+1}{2}}$ in (5), we obtain by (6)
\[
\|\sigma^{\frac{\alpha+1}{2}}\|_{L^{2n/n-2}} \leq c_2(n) \text{vol}(M)^{-\frac{1}{2}} [\text{vol}(M)^{\frac{1}{2}}] \|\sigma \cdot \sigma^{\alpha+1}\|_{L^1} + \|\sigma^{\alpha+1}\|_2].
\]
Taking $\alpha + 1 = \frac{q}{2}$ in (7) and applying Hölder’s inequality to $\|\sigma \cdot \sigma^{n/2}\|_1$, we have
\[
\|\sigma^{\frac{q}{2}}\|_{L^{2n/n-2}} \leq c_3(n) \text{vol}(M)^{-\frac{1}{2}} [\text{vol}(M)^{\frac{1}{2}}] \|\sigma\|_{L^1} \|\sigma^{\frac{q}{2}}\|_{L^{2n/n-2}} + \|\sigma\|_{L^1}^{\frac{q}{2}}.
\]
It follows from (8) that there is a small constant $\varepsilon(n) > 0$, such that for some $\varepsilon \leq \varepsilon(n)$
\[
\|\sigma\|_{L^1}^{\frac{q}{2}} \leq \frac{\text{vol}(M)^{\frac{1}{2}}}{\text{vol}(M)^{\frac{1}{2}}} \varepsilon,
\]
then
\[
\|\sigma\|_{L^1}^{\frac{q}{2}} = \|\sigma^{\frac{q}{2}}\|_{L^{2n/n-2}} \leq c_4(n) \text{vol}(M)^{-\frac{q}{2n}} \|\sigma\|_{L^1}^{\frac{q}{2}} \leq c_5(n) \text{vol}(M)^{\frac{1}{2} - \frac{4}{n} \text{vol}(M)^{-1}}.
\]
where $q = \frac{n}{2} \cdot \frac{2n}{n-2}$. For general $\alpha \geq 1$, by Hölder's inequality, the interpolation inequality, and (10), we have that for all $\theta > 0$

(11) $\|\sigma \cdot \sigma^{\alpha+1}\|_1 \leq \|\sigma\|_\frac{q}{2} \|\sigma^{\frac{n+1}{2}}\|_2^2$

\[\leq c_5(n)\text{vol}(M)^{\frac{2}{n-2}}\text{dia}(M)^{-2}(\theta\|\sigma^{\alpha+1}\|_\frac{2n}{n-2} + \theta^{-\frac{2}{n-2}}\|\sigma^{\alpha+1}\|_2)^2. \]

Thus it follows from (7) and (11) that

(12) $\|\sigma^{\frac{n+1}{2}}\|_\frac{2n}{n-2} \leq c_6(n)[\alpha^\frac{1}{2}\text{vol}(M)^{-\frac{3}{2}}\theta\|\sigma^{\alpha+1}\|_2^\frac{2n}{n-2} + (\alpha^\frac{1}{2}\text{vol}(M)^{-\frac{3}{2}}\theta^{-\frac{2}{n-2}} + \text{vol}(M)^{-\frac{1}{2}})\|\sigma^{\alpha+1}\|_2].$

Choosing $\theta = \frac{1}{2}c_6(n)^{-\alpha^\frac{1}{2}}\text{vol}(M)^{\frac{3}{2}}$, we obtain by (12)

(13) $\|\sigma^{\frac{n+1}{2}}\|_\frac{2n}{n-2} \leq c_7(n)\alpha^\frac{3}{2}\text{vol}(M)^{-\frac{3}{2}}\|\sigma^{\alpha+1}\|_2.$

Let $\chi = \frac{n}{n-2}$ and $\alpha + 1 = \frac{n}{2}\chi^i$, $i \geq 0$. It follows from (13) that

\[\|\sigma\|_\frac{\chi^i+1}{\chi^i} \leq c_8(n)\chi^\frac{1}{\chi^i}\text{vol}(M)^{-\frac{3}{2}}\chi^\frac{1}{\chi^i}\|\sigma\|_\frac{\chi^i}{\chi^i} \]

\[\leq c_8(n)\chi^{\frac{1}{\chi^i}+\frac{1}{2}}\text{vol}(M)^{-\frac{3}{2}}(\chi^{\frac{1}{\chi^i}+\frac{1}{2}}\|\sigma\|_\frac{1}{\chi^i}). \]

Letting $i \to +\infty$, we obtain

\[\sigma \leq c_9(n)\text{vol}(M)^{-\frac{3}{2}}\|\sigma\|_\frac{1}{\chi^i} \leq c_9(n)\text{dia}(M)^{-2}\varepsilon, \]

i.e.,

\[\sigma \cdot \text{dia}(M)^2 \leq c_9(n)\varepsilon. \]

The last inequality follows from (9). Choosing a smaller ε in (9) if necessary, by the argument in §1, we conclude that $\sigma \equiv 0$, i.e., g is flat. This completes the proof of Theorem 2.

3. Closed Einstein manifolds with $\lambda < 0$

In this section we will only give a sketch of the proof of Theorem 4. The method applied here is very standard and similar to that given in §2. Let $M = (M, g)$ be a closed Einstein n-manifold with Einstein constant $\lambda < 0$ and $\text{dia}(M) \leq D$. Throughout this section $c_i(n)$'s always denote positive constants depending only on n.

First one has the following Sobolev inequality in M (cf., e.g., [Be] for references): for every $f \in C^\infty(M)$

(14) $\|f\|_\frac{2n}{n-2} \leq c_1(n)C(\sqrt{|\lambda|}D)^{-\frac{n}{2}}(\sqrt{|\lambda|}^{-\frac{1}{2}}\|\nabla f\|_2 + \|f\|_2),$

where $C(x)$, $x > 0$, is the unique positive root of the equation

\[y \int_0^x (\cosh t + y \sinh t)^{n-1} dt = \int_0^x \sin^{n-1} t dt. \]
Similarly, by (1) and (14) we obtain that there is a constant \(\varepsilon(n) > 0 \) if for some \(\varepsilon < \varepsilon(n) \)
\[\| \sigma \|_{\frac{q}{2}} \leq |\lambda| \text{vol}(M)^{\frac{q}{2}} \varepsilon \]
then for \(q = \frac{n}{2} \cdot \frac{2n}{n-2} \)
\[\| \sigma \|_{\frac{q}{2}} \leq c_2(n) C(\sqrt{|\lambda| D})^{-\frac{q}{4}} \text{vol}(M)^{-\frac{q}{4}} \| \sigma \|_{\frac{q}{2}} \]
\[\leq c_3(n) C(\sqrt{|\lambda| D})^{2-\frac{q}{4}} |\lambda| \text{vol}(M)^{\frac{q}{2} - \frac{q}{4}} \]
and for \(\alpha \geq 1 \),
\[\| \sigma^{\alpha \frac{q}{2}} \|_{\frac{q}{2} \alpha} \leq c_4(n) C(\sqrt{|\lambda| D})^{-\frac{q}{4}} \alpha \| \sigma \|^{\alpha \frac{q}{2}} \]
Then the last argument in \(\S 2 \) carries over to give
\[\sigma \leq c_5(n) C(\sqrt{|\lambda| D})^{-\frac{q}{2}} |\lambda| \varepsilon. \]
Choosing a smaller \(\varepsilon \) in (15) if necessary, by Theorem 3 (Ye), one concludes that \(\sigma = 0 \), i.e., \(g \) has constant curvature \(\lambda < 0 \).

4. PROOF OF THEOREM 5

Let \(M = (M, g) \) be a complete \(n \)-manifold. Denote by \(\lambda_1(M, g) \) the first eigenvalue of \(M \), defined as
\[\lambda_1(M, g) = \inf f \frac{|\nabla f|^2}{f^2}, \]
where the infimum is taken over all \(f \in C^\infty_0(M) \) with compact support in \(M \). It is proved in [M] that if \(M \) is simply connected with sectional curvature \(K_g \leq -\Lambda^2 \) (\(\Lambda > 0 \)),
\[\lambda_1(M, g) \geq \frac{(n-1)^2}{4} \Lambda^2, \]
i.e., for every \(f \in C^\infty_0(M) \),
\[\frac{1}{4} (n-1)^2 \Lambda^2 \int f^2 \leq \int |\nabla f|^2. \]
From now on \((M, g) \) always denotes a complete Einstein \(n \)-manifold with Einstein constant \(\lambda < 0 \) and \(c_1(n) \)'s denote positive constants depending only on \(n \). Clearly, there is a small constant \(\varepsilon(n) > 0 \) such that if for some \(\varepsilon \leq \varepsilon(n) \), \(\sigma \leq |\lambda| \varepsilon \), then the sectional curvature satisfies
\[K_g \leq -(1 - c_1(n)\varepsilon)|\lambda| < 0. \]
By (1) and (17) we have
\[\Delta \sigma + (c_0(n)\varepsilon + 2(n-1))|\lambda| \sigma \geq 0. \]
Multiply (18) by \(\sigma \eta^2 \), where \(\eta \) is a cut off function of compact support in \(M \).
Integration by parts gives
\[(c_0(n)\varepsilon + 2(n-1))|\lambda| \int (\sigma \eta)^2 \geq \int |\nabla (\sigma \eta)|^2 - \int |\nabla \eta|^2 \sigma^2. \]
Taking $f = \eta \sigma$ in (16), by (17) we have
\[
\frac{1}{4}(n-1)^2(1 - c_1(n)\varepsilon)|\lambda| \int (\sigma \eta)^2 \leq \int |\nabla (\sigma \eta)|^2;
\]
so that by (19)
\[
\int |\nabla \eta|^2 \sigma^2 \geq \left[\frac{1}{4}(n-1)(n-9) - c_2(n)\varepsilon \right] |\lambda| \int (\sigma \eta)^2.
\]

Now suppose $n \geq 10$. Take $\delta(n) = \frac{1}{3}\sqrt{(n-1)(n-9)}$. One can choose a smaller ε in (17) if necessary, such that
\[
\frac{1}{4}(n-1)(n-9) - c_2(n)\varepsilon \geq \frac{1}{4}e^2\delta(n)^2.
\]
Choosing $\eta(x) = \eta(d(p, x))$, where
\[
\eta(t) = \begin{cases}
1 & \text{if } t \leq r, \\
\frac{R - t}{R - r} & \text{if } r \leq t \leq R, \\
0 & \text{if } t \geq R,
\end{cases}
\]
we obtain by (20)
\[
\frac{1}{(R-r)^2} \int_{B(p, r)} \sigma^2 \geq \frac{1}{4} e^2 \delta(n)^2 |\lambda| \int_{B(p, r)} \sigma^2.
\]

For any $r_0 > 0$, take $r_j = 2\delta(n)^{-1}|\lambda|^{-\frac{1}{2}}j + r_0$, $j \geq 0$. It then follows from (21) that
\[
\int_{B(p, r_j)} \sigma^2 \geq e^2 \int_{B(p, r_{j-1})} \sigma^2 \geq e^{2j} \int_{B(p, r_0)} \sigma^2 = e^{\delta(n)|\lambda|^{-\frac{1}{2}}(r_j - r_0)} \int_{B(p, r_0)} \sigma^2.
\]

Thus it is easy to see that
\[
\int_{B(p, r_0)} \sigma^2 \leq e^{-\delta(n)|\lambda|^{-\frac{1}{2}}(r_j - r_0)} \int_{B(p, r_j)} \sigma^2.
\]
Letting $r_j \to +\infty$, by Theorem 5(ii), one obtains $\sigma \equiv 0$ on $B(p, r_0)$. Since r_0 is arbitrary, one concludes that $\sigma \equiv 0$ on M, i.e., g has constant curvature $\lambda < 0$. This completes the proof of Theorem 5.

REFERENCES

Mathematical Sciences Research Institute, Berkeley, California 94720

Current address: Department of Mathematics, University of Michigan, Ann Arbor, Michigan 48109-1003

e-mail: zhongmin@math.lsa.umich.edu