Publications Meetings The Profession Membership Programs Math Samplings Policy & Advocacy In the News About the AMS
Mobile Device Pairing
Green Open Access
Proceedings of the American Mathematical Society
Proceedings of the American Mathematical Society
ISSN 1088-6826(online) ISSN 0002-9939(print)


Rigidity theorems for nonpositive Einstein metrics

Author: Zhong Min Shen
Journal: Proc. Amer. Math. Soc. 116 (1992), 1107-1114
MSC: Primary 53C25; Secondary 53C20
MathSciNet review: 1123666
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper we study the following problem: When must a complete Einstein metric $ g$ on an $ n$-manifold with $ \operatorname{Ric} = (n - 1)\lambda {\text{g,}}\lambda \leq 0$, be a metric of constant curvature $ \lambda ?$

References [Enhancements On Off] (What's this?)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 53C25, 53C20

Retrieve articles in all journals with MSC: 53C25, 53C20

Additional Information

PII: S 0002-9939(1992)1123666-5
Keywords: Einstein metrics, rigidity, Sobolev inequality, the first eigenvalue, diameter, volume
Article copyright: © Copyright 1992 American Mathematical Society