Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

A note on the normal generation of ample line bundles on an abelian surface


Author: Akira Ohbuchi
Journal: Proc. Amer. Math. Soc. 117 (1993), 275-277
MSC: Primary 14J25; Secondary 14K05
DOI: https://doi.org/10.1090/S0002-9939-1993-1106182-7
MathSciNet review: 1106182
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ L$ be an ample line bundle on an abelian surface $ A$. We prove that the four conditions: (1) $ L$ is base point free, (2) $ L$ is fixed component free, (3) $ {L^{ \otimes 2}}$ is very ample, (4) $ {L^{ \otimes 2}}$ is normally generated, are equivalent if $ ({L^2}) > 4$. Moreover we prove that $ {L^{ \otimes 2}}$ is not normally generated if $ ({L^2}) = 4$.


References [Enhancements On Off] (What's this?)

  • [1] S. Koizumi, Theta relations and projective normality of abelian varieties, Amer. J. Math. 98 (1976), 868-889. MR 0480543 (58:702)
  • [2] D. Mumford, Abelian varieties, Oxford Univ. Press, New York, 1970. MR 0282985 (44:219)
  • [3] A. Ohbuchi, Some remarks on ample line bundles on abelian varieties, Manuscripta Math. 57 (1987), 225-238. MR 871633 (87m:14051)
  • [4] -, A note on the normal generation of ample line bundles on abelian varieties, Proc. Japan Acad. Ser. A Math. Sci. 64 (1988), 119-120. MR 966402 (90a:14062a)
  • [5] R. Sasaki, Theta relations and their applications in abstract geometry, Sci. Rep. Tokyo Kyoiku Daigaku 381 (1977), 138-160. MR 0476767 (57:16322)
  • [6] T. Sekiguchi, On projective normality of abelian varieties, J. Math. Soc. Japan 28 (1976), 307-322. MR 0401784 (53:5611)
  • [7] -, On projective normality of abelian varieties. II, J. Math. Soc. Japan 29 (1977), 709-727. MR 0457457 (56:15662)
  • [8] -, On the cubics defining abelian varieties, J. Math. Soc. Japan 30 (1977), 703-721. MR 513079 (80i:14013)
  • [9] O. Zariski, Introduction to the problem of minimal models in the theory of algebraic surfaces, Math. Soc. Japan (1958). MR 0097403 (20:3872)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 14J25, 14K05

Retrieve articles in all journals with MSC: 14J25, 14K05


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1993-1106182-7
Article copyright: © Copyright 1993 American Mathematical Society

American Mathematical Society