A note on the normal generation of ample line bundles on an abelian surface

Author:
Akira Ohbuchi

Journal:
Proc. Amer. Math. Soc. **117** (1993), 275-277

MSC:
Primary 14J25; Secondary 14K05

DOI:
https://doi.org/10.1090/S0002-9939-1993-1106182-7

MathSciNet review:
1106182

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let be an ample line bundle on an abelian surface . We prove that the four conditions: (1) is base point free, (2) is fixed component free, (3) is very ample, (4) is normally generated, are equivalent if . Moreover we prove that is not normally generated if .

**[1]**S. Koizumi,*Theta relations and projective normality of abelian varieties*, Amer. J. Math.**98**(1976), 868-889. MR**0480543 (58:702)****[2]**D. Mumford,*Abelian varieties*, Oxford Univ. Press, New York, 1970. MR**0282985 (44:219)****[3]**A. Ohbuchi,*Some remarks on ample line bundles on abelian varieties*, Manuscripta Math.**57**(1987), 225-238. MR**871633 (87m:14051)****[4]**-,*A note on the normal generation of ample line bundles on abelian varieties*, Proc. Japan Acad. Ser. A Math. Sci.**64**(1988), 119-120. MR**966402 (90a:14062a)****[5]**R. Sasaki,*Theta relations and their applications in abstract geometry*, Sci. Rep. Tokyo Kyoiku Daigaku**381**(1977), 138-160. MR**0476767 (57:16322)****[6]**T. Sekiguchi,*On projective normality of abelian varieties*, J. Math. Soc. Japan**28**(1976), 307-322. MR**0401784 (53:5611)****[7]**-,*On projective normality of abelian varieties*. II, J. Math. Soc. Japan**29**(1977), 709-727. MR**0457457 (56:15662)****[8]**-,*On the cubics defining abelian varieties*, J. Math. Soc. Japan**30**(1977), 703-721. MR**513079 (80i:14013)****[9]**O. Zariski,*Introduction to the problem of minimal models in the theory of algebraic surfaces*, Math. Soc. Japan (1958). MR**0097403 (20:3872)**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC:
14J25,
14K05

Retrieve articles in all journals with MSC: 14J25, 14K05

Additional Information

DOI:
https://doi.org/10.1090/S0002-9939-1993-1106182-7

Article copyright:
© Copyright 1993
American Mathematical Society