Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Regular sets of sampling and interpolation for weighted Bergman spaces


Author: Kristian Seip
Journal: Proc. Amer. Math. Soc. 117 (1993), 213-220
MSC: Primary 30D50; Secondary 30E10, 46E20
DOI: https://doi.org/10.1090/S0002-9939-1993-1111222-5
MathSciNet review: 1111222
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ {z_{mn}} = {a^m}(bn + i),\;a > 1,\;b > 0,\;m,\;n$ integers. For each weighted Bergman space on the upper half-plane there exists a constant $ c > 0$ such that $ \{ {z_{mn}}\} $ is a set of sampling if and only if $ b\,\ln \,a < c$ and a set of interpolation if and only if $ b\,\ln \,a > c$. When $ b\,\ln \,a = c$, $ \{ {z_{mn}}\} $ is a set of uniqueness.


References [Enhancements On Off] (What's this?)

  • [1] A. Beurling, The collected works of Arne Beurling, Vol. 2 Harmonic Analysis (L. Carleson et al., eds.), Birkhäuser, Boston, MA, 1989. MR 1057614 (92k:01046b)
  • [2] R. R. Coifman and R. Rochberg, Representation theorems for holomorphic and harmonic functions in $ {L^p}$, Astérisque 77 (1980), 11-66. MR 604369 (82j:32015)
  • [3] I. Daubechies, The wavelet transform, time-frequency localization and signal analysis, IEEE Trans. Inform. Theory 36 (1990), 961-1005. MR 1066587 (91e:42038)
  • [4] I. Daubechies and A. Grossmann, Frames in the Bargmann space of entire functions, Comm. Pure Appl. Math. 41 (1988), 151-164. MR 924682 (89e:46028)
  • [5] A. Grossmann, J. Morlet, and T. Paul, Transforms related to square integrable group representations II. Examples, Ann. Inst. Henri Poincaré Phys. Théor. 45 (1986), 293-309. MR 868528 (88d:22011)
  • [6] B. Korenblum, An extension of the Nevanlinna theory, Acta Math. 135 (1975), 187-219. MR 0425124 (54:13081)
  • [7] H. J. Landau, Necessary density conditions for sampling and interpolation of certain entire functions, Acta Math. 117 (1967), 37-52. MR 0222554 (36:5604)
  • [8] T. Paul and K. Seip, Wavelets and quantum mechanics, Wavelets and Their Applications (G. Beylkin et al., eds.), Jones and Bartlett, Boston, MA, 1992, 303-321. MR 1187347 (94g:81029)
  • [9] R. Rochberg, Interpolation by functions in Bergman spaces, Michigan Math. J. 29 (1982) 229-236. MR 654483 (83e:30039)
  • [10] K. Seip, Reproducing formulas and double orthogonality in Bargmann and Bergman spaces, SIAM J. Math. Anal. 22 (1991), 856-876. MR 1091688 (92e:44006)
  • [11] K. Seip and R. Wallstén, Sampling and interpolation in the Bargmann-Fock space, Report Institut Mittag-Leffler 1990/91.
  • [12] K. Zhu, Operator theory in function spaces, Marcel Dekker, New York, 1990. MR 1074007 (92c:47031)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 30D50, 30E10, 46E20

Retrieve articles in all journals with MSC: 30D50, 30E10, 46E20


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1993-1111222-5
Article copyright: © Copyright 1993 American Mathematical Society

American Mathematical Society