Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 

 

$ L\sp p$ function decomposition on $ C\sp \infty$ totally real submanifolds of $ {\bf C}\sp n$


Author: William S. Calbeck
Journal: Proc. Amer. Math. Soc. 117 (1993), 187-194
MSC: Primary 32A40; Secondary 32D99
MathSciNet review: 1116253
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: For $ 1 < p < \infty $ we show that $ {L^p}$ functions defined on a $ {C^\infty }$ totally real submanifold of $ {\mathbb{C}^n}$ can be locally decomposed into the sum of boundary values of holomorphic functions in wedges such that the boundary values are in $ {L^p}$.

The general case of a $ {C^\infty }$ totally real submanifold is reduced to the flat case of $ {\mathbb{R}^n}$ in $ {\mathbb{C}^n}$ by an almost analytic change of variables. $ {L^p}$ results in the flat case are then obtained using Fourier multipliers. In transporting these results back to the manifold we lose analyticity, so it is necessary to solve a $ \overline \partial $ problem in an appropriate domain. This gives holomorphy in the wedges but produces a $ {C^\infty }$ error on the edge. This $ {C^\infty }$ function is then holomorphically decomposed using the FBI transform with a careful analysis to check that the functions are $ {C^\infty }$ up to the edge and do not destroy the $ {L^p}$ behavior.


References [Enhancements On Off] (What's this?)

  • [1] M. S. Baouendi, C. H. Chang, and F. Trèves, Microlocal hypo-analyticity and extension of CR functions, J. Differential Geom. 18 (1983), no. 3, 331–391. MR 723811
  • [2] Alain Dufresnoy, Sur l’opérateur 𝑑′′ et les fonctions différentiables au sens de Whitney, Ann. Inst. Fourier (Grenoble) 29 (1979), no. 1, xvi, 229–238 (French, with English summary). MR 526786
  • [3] Elias M. Stein, Singular integrals and differentiability properties of functions, Princeton Mathematical Series, No. 30, Princeton University Press, Princeton, N.J., 1970. MR 0290095

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 32A40, 32D99

Retrieve articles in all journals with MSC: 32A40, 32D99


Additional Information

DOI: http://dx.doi.org/10.1090/S0002-9939-1993-1116253-7
Article copyright: © Copyright 1993 American Mathematical Society