Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

$ A\sb 2$-annihilated elements in $ H\sb *(\Omega\Sigma{\bf R}{\rm P}\sp 2)$


Authors: D. J. Anick and F. P. Peterson
Journal: Proc. Amer. Math. Soc. 117 (1993), 243-250
MSC: Primary 55S10; Secondary 55R40
DOI: https://doi.org/10.1090/S0002-9939-1993-1123647-2
MathSciNet review: 1123647
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ {X^n}$ denote the smash product of $ n$ copies of $ \mathbb{R}{\mathbb{P}^2}$. We describe a minimal set of generators for $ {H^{\ast}}({X^n};{\mathbb{Z}_2})$ as a module over the $ \bmod \,2$ Steenrod algebra. The description includes a procedure to obtain all of the generators, a generating function to enumerate them, and a proof of a nice conjecture about how many there are in each dimension.


References [Enhancements On Off] (What's this?)

  • [1] D. J. Anick, On the homogeneous invariants of a tensor algebra, Algebraic Topology, Contemp. Math., vol. 96, Amer. Math. Soc., Providence, RI, 1989, pp. 15-17. MR 1022670 (90i:55033)
  • [2] R. A. Brualdi, Introductory combinatorics, Elsevier, New York, 1977. MR 0505522 (58:21631)
  • [3] H. E. A. Campbell and P. Selick, Polynomial algebras over the Steenrod algebra, Comment. Math. Helv. 65 (1990), 171-180. MR 1057238 (91f:55006)
  • [4] J. Harris, T. Hunter, and J. Shank, Steenrod algebra module maps from $ {H^{\ast}}{(BZ/p)^n}$ to $ {H^{\ast}}{(BZ/p)^s}$, Trans. Amer. Math. Soc. (to appear).
  • [5] J. Harris and N. Kuhn, Stable decompositions of classifying spaces of finite abelian $ p$-groups, Math. Proc. Cambridge Philos. Soc. 103 (1988), 427-449. MR 932667 (89d:55021)
  • [6] S. Mitchell and S. Priddy, Stable splittings derived from the Steinberg module, Topology 22 (1983), 285-298. MR 710102 (85f:55005)
  • [7] F. P. Peterson, Generators of $ {H^{\ast}}(R{P^\infty } \wedge R{P^\infty })$ as a module over the Steenrod algebra, Abstracts Amer. Math. Soc., no. 833-55-89, Amer. Math. Soc., Providence, RI, April 1987.
  • [8] W. Singer, The iterated transfer in homological algebra (to appear). MR 1022818 (90i:55035)
  • [9] R. M. W. Wood, Modular representations of $ \operatorname{GL} (n,{F_p})$ and homotopy theory, Algebraic Topology (Gottingen, 1984), Lecture Notes in Math., vol. 1172, Springer, Berlin and New York, 1985, pp. 188-203. MR 825782 (88a:55007)
  • [10] -, Steenrod squares of polynomials and the Peterson conjecture, Math. Proc. Cambridge Philos. Soc. 105 (1989), 307-309. MR 974986 (90a:55030)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 55S10, 55R40

Retrieve articles in all journals with MSC: 55S10, 55R40


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1993-1123647-2
Article copyright: © Copyright 1993 American Mathematical Society

American Mathematical Society