Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 

 

$ A\sb 2$-annihilated elements in $ H\sb *(\Omega\Sigma{\bf R}{\rm P}\sp 2)$


Authors: D. J. Anick and F. P. Peterson
Journal: Proc. Amer. Math. Soc. 117 (1993), 243-250
MSC: Primary 55S10; Secondary 55R40
DOI: https://doi.org/10.1090/S0002-9939-1993-1123647-2
MathSciNet review: 1123647
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ {X^n}$ denote the smash product of $ n$ copies of $ \mathbb{R}{\mathbb{P}^2}$. We describe a minimal set of generators for $ {H^{\ast}}({X^n};{\mathbb{Z}_2})$ as a module over the $ \bmod \,2$ Steenrod algebra. The description includes a procedure to obtain all of the generators, a generating function to enumerate them, and a proof of a nice conjecture about how many there are in each dimension.


References [Enhancements On Off] (What's this?)


Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 55S10, 55R40

Retrieve articles in all journals with MSC: 55S10, 55R40


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1993-1123647-2
Article copyright: © Copyright 1993 American Mathematical Society