THE MOUNTAIN CLIMBERS' PROBLEM

TAMÁS KELETI

(Communicated by Andrew M. Bruckner)

Abstract. We show that two climbers can climb a mountain in such a way that at each moment they are at the same height above the sea level, supposing that the mountain has no plateau. That is, if \(f \) and \(g \) are continuous functions mapping \([0, 1]\) to \([0, 1]\) with \(f(0) = g(0) = 0 \) and \(f(1) = g(1) = 1 \), and if neither \(f \) nor \(g \) has an interval of constancy then there exist continuous functions \(k \) and \(h: [0, 1] \to [0, 1] \) satisfying \(k(0) = h(0) = 0 \), \(k(1) = h(1) = 1 \), and \(f \circ k = g \circ h \).

Introduction

In this paper we shall examine the following problem: Two mountain climbers begin at sea level, at opposite ends of a (two-dimensional) chain of mountains. Can they find routes along which to travel, always maintaining equal altitudes, until they eventually meet?

If we now select a point of maximum altitude and reparametrize, we can formulate it as follows:

\((*) \) Let \(f \) and \(g \) be continuous functions mapping \([0, 1]\) to \([0, 1]\) with \(f(0) = g(0) = 0 \) and \(f(1) = g(1) = 1 \). Are there continuous functions \(k \) and \(h: [0, 1] \to [0, 1] \) satisfying \(k(0) = h(0) = 0 \), \(k(1) = h(1) = 1 \), and \(f \circ k = g \circ h \)?

This problem, in a slightly different form, was posed by Whittaker in [2]. Whittaker proves that the answer is yes if \(f \) and \(g \) are piecewise monotone (see also [1]). He also shows that \((*) \) is not true in general. Namely, it is easy to verify that for the following two functions there are no corresponding \(k \) and \(h \): let \(f \) be a monotone function that is constant in an interval, let \(g \) be a function that oscillates around this value. (See Figure 1 on the next page.)

It does not follow from this counterexample that a "typical continuous" function is not climiable; \(f \) is a very special continuous function (it has an interval of constancy), and this is the reason that the pair of functions \((f, g)\) is a counterexample. We can hope that all the counterexamples are similarly restricted, namely, that the answer for \((*)\) is yes if we suppose that neither \(f \) nor \(g \) have...
Figure 1

Notation 1. \(\mathcal{F} = \{ f : [0, 1] \to [0, 1] \text{ continuous, } f(0) = 0, f(1) = 1 \} \).

Let \(C[a, b] \) denote the set of continuous functions defined in the interval \([a, b] \) where \(a < b \).

\([a, b]\) will denote the closed interval \([a, b] \) if \(a < b \); \([b, a]\) if \(b < a \) and it will denote the point \(a \) if \(a = b \).

\(\mathcal{G} = \{ f \in C[a, b] \mid a, b \in \mathbb{R}, a < b, f([a, b]) = [f(a), f(b)] \} \).

\(f \bowtie g \) (\(f \) and \(g \) match each other) if \(f, g \in \mathcal{G} \) and their range is the same.

\(f \sim g \) (\(f \) and \(g \) are climbable) if \(f \bowtie g \) and \(\exists k, h \in \mathcal{G} : f \circ k = g \circ h \), and if the ranges of \(k \) and \(h \) are equal to the domains of definition of \(f \) and \(g \), respectively.

By monotone we shall mean nondecreasing or nonincreasing.

Remarks. \(f, g \in \mathcal{G} \Rightarrow f \bowtie g \).

- If \(f \bowtie g \), then by linear change of parameter we can get two functions \(f_1, g_1 \) from \(\mathcal{F} \). Then \(f \sim g \) if \(f_1 \sim g_1 \), since we can reparametrize the functions \(k_1 \) and \(h_1 \) as well.

- It follows from the previous remark that it will be enough to prove the statements for functions \(f, g \in \mathcal{G} \) instead of for all functions satisfying \(f \bowtie g \).

- If \(f, g \in \mathcal{G} \), then \(f \sim g \Leftrightarrow \exists k, h \in \mathcal{G} : f \circ k = g \circ h \), which means that the new, more general definition of climbable is an extension of (\(\ast \)).

First we shall prove a statement that is weaker than our theorem but from which the statement of [2] follows easily.

Proposition 1. If \(f \bowtie g \) and \(f \) is piecewise strictly monotone then \(f \sim g \).

Proof. Let \(n \) denote the number of local extreme values of \(f \). Since \(f \) has a global maximum and a global minimum, \(n \geq 2 \).

We shall prove the statement by induction on \(n \). If \(n = 2 \) then \(f \) is strictly monotone, and in this case the statement is obvious.

Assume that \(n \geq 3 \) and the statement is valid for \(2, \ldots, n-1 \). By using the remarks above, we can suppose that \(f, g \in \mathcal{G} \). First we assume that \(1 \) is the only point where the value of \(f \) equals 1.
Let y_1 be the second largest local extreme value of f, let x_1 be the greatest point where the value of f is y_1. Let x_0 be the last local extremum point, let $y_0 = f(x_0)$. (See Figure 2a.) Here and in the sequel, last means the maximal element of a closed set.) It is clear that $x_0 < x_1$, $y_0 < y_1$, f is strictly increasing in $[x_0, 1]$, and $f([0, x_1]) = [0, y_1]$.

Let z_1 be the smallest value in $[0, 1]$ satisfying $g(z_1) = y_1$, u_1 be the smallest value in $[z_1, 1]$ satisfying $g(u_1) = y_0$, z_2 be the smallest value in $[u_1, 1]$ satisfying $g(z_2) = y_1$, etc. (See Figure 2b.) The function g is continuous, thus there exists an index m such that after z_m, $g > y_0$.

Let v_k be the greatest point in $[0, u_k]$ for which $g(v_k) = y_1$. (Clearly $z_k < v_k < u_k$.) Let w_k be a minimum point of g in $[v_k, z_{k+1}]$. (See Figure 2b.) Let w'_k be the greatest point in $[0, x_1]$ for which $f(w'_k) = g(w_k)$.

Using these points and our assumption, we can show how to climb f and g. It follows from the construction that

- (a) $f|\[0, x_1]\prec g|\[0, z_1]\$,
- (b) $f|\[x_1, w'_k]\prec g|\[v_k, w_k]\$,
- (c) $f|\[w'_k, x_1]\prec g|\[w_k, z_{k+1}]\$,

and in these intervals, f has less than n local extreme values, which means, using the assumption, that these pairs of parts of functions are climbable. We can link the climbing of the pairs of function parts (b) and (c). We still have to climb the function g in the intervals $[z_k, v_k]$ ($k = 1, 2, \ldots, m - 1$) in such a way that at the same time we traverse on the graph of f beginning from $(x_1, f(x_1))$ and returning there. Finally we also need that when we move on the graph of g from $(z_m, g(z_m))$ to $(1, 1)$, we similarly move on the graph of f from $(x_1, f(x_1))$ to $(1, 1)$. We can do the above steps easily since in these intervals the range of g is in $[y_0, 1]$, $x_1 \in [x_0, 1]$, and f is strictly monotone increasing in $[x_0, 1]$, and its range is the interval $[y_0, 1]$ here, and $g(1) = 1$. (For example $h(x) = x$ and $k = f^{-1} \circ g$ are well defined in the given intervals and obviously $f \circ k = g \circ h$.)

Therefore, we can make the induction step in the case when 1 is the only point where the value of f is 1. Now we remove this assumption. The points where f attains its maximum are $x_1 < x_2 < \cdots < x_m = 1$. Let y_k be the
first minimum point of f in $[x_k, x_{k+1}]$, and let z_k be the greatest point for which $g(z_k) = f(y_k)$. In this case, $f|_{[0, x_1]} \bowtie g$, $f|_{[x_k, y_k]} \bowtie g|_{[1, z_k]}$, and $f|_{[y_k, x_{k+1}]} \bowtie g|_{[z_k, 1]}$. For these functions we proved that they are climbable, and as we can link these climbings, $f \sim g$. This concludes the proof.

Notation 2. For a fixed $f \in C[a, b]$ we shall say that $a = x_0, x_1, \ldots, x_n = b$ is a nice sequence if $f|_{[x_{i-1}, x_i]} \in \mathcal{G}$ ($i = 1, 2, \ldots, n$), in other words, if $f([x_{i-1}, x_i]) = [f(x_{i-1}), f(x_i)]$ and $x_{i-1} \neq x_i$.

We call a nice sequence a nice partition if $a = x_0 < x_1 < \cdots < x_n = b$.

A nice sequence or partition x_0, x_1, \ldots, x_n is δ-fine if $|x_i - x_{i-1}| \leq \delta$ ($i = 1, \ldots, n$).

A nice sequence or partition x_0, \ldots, x_n (for f) is oscillating if

$$
(f(x_i) - f(x_{i-1}))(f(x_{i+1}) - f(x_i)) < 0
$$

(i = 1, 2, \ldots, n - 1).

Proposition 2. Suppose $f \in C[a, b]$, f is not constant in any interval, and f is locally increasing or decreasing at a from the right and also at b from the left.

Then there is a nice oscillating partition for f.

Proof. Let $x_0 = a$.

Assume that we defined x_0, \ldots, x_i (that is, x_0, \ldots, x_i is a nice partition for $f|_{[a, x_i]}$). Suppose that f is locally increasing or decreasing at x_i from the right. These assumptions hold for the first step.

Clearly we can assume that f is locally increasing at x_i from the right. We will distinguish between two cases.

Case A. The function f does not take the value of $f(x_i)$ in the interval $(x_i, b]$. (It follows that $f > f(x_i)$ here.)

In this case, let x_{i+1} be the last global maximum point in $[x_i, b]$. If $x_{i+1} = b$, then the procedure is finished.

Case B. The function f does take the value of $f(x_i)$ in the interval $(x_i, b]$. Since f locally increases at x_i from the right, there exists a number x_i' in (x_i, b) for which $f(x_i') = f(x_i)$ and $f(x) \geq f(x_i)$ for every $x_i \leq x \leq x_i'$. Let x_{i+1} be the last global maximum point in $[x_i, x_i']$. In this way, $x_i < x_{i+1} < x_i'$.

In both cases, x_{i+1} is a local maximum point, so if $x_{i+1} < b$ then f is locally decreasing at x_{i+1} from the right. On the other hand, $f|_{[x_i, x_{i+1}]} \in \mathcal{G}$; therefore, the assumptions hold for the next step. We can continue the procedure, and we will have a nice partition if we reach the end. It is also clear that this will be a nice oscillating partition.

Therefore it will be sufficient to show that this procedure finishes after a finite number of steps. Let us suppose, to the contrary, that the procedure is infinite. Let x_n tend to the limit C. Again we will distinguish between two cases:

Case 1: There exists a step, say the ith, when we used Case A. Since the point x_i we get in this step is the last maximum or the last minimum point in $[x_{i-1}, b]$, f never takes on the value of $f(x_i)$ in $(x_i, b]$. So at the next step, Case A appears again; therefore, continuing after this, Case A will always occur.

We cannot have $C = b$ since there is a left neighborhood of b where b is an extreme point, so if x_n is in this neighborhood then the procedure is finished in two steps.
Therefore \(C < b \). Since \(f \) is continuous, \(f(x_n) \to f(C) \). On the other hand, the elements of the sequence \(\{ f(x_n) \} \) are alternating minimum and maximum values in an interval containing \([C, b]\). This implies that \(f([C, b]) = f(C) \), but we assumed that \(f \) is not constant in any interval. Therefore this case cannot happen.

Case 2: Only Case B occurs. Let us suppose that \(f \) is locally increasing at \(x_j \) from the right. In this case, \(f(x_j) = f(x'_j) < f(x_{j+1}) \), \(x_{j+1} \) is the last maximum point in \([x_j, x'_j]\); so in the next step, \(x'_{j+1} > x'_j \cdot x_{j+2} \) is a minimum point in \([x_{j+1}, x'_{j+1}] \) and \(x'_j \in [x_{j+1}, x'_{j+1}] \), therefore, \(f(x_{j+2}) \leq f(x'_j) = f(x_j) \). Continuing this argument, we obtain \(f(x_i) \geq f(x_{i+2}) \geq f(x_{i+4}) \geq \cdots \). By similar arguments, \(f(x_{i+1}) \leq f(x_{i+3}) \leq f(x_{i+5}) \leq \cdots \). On the other hand, \(f(x_i) < f(x_{i+1}) \), so \(\{ f(x_n) \} \) cannot be convergent. But \(f(x_n) \) tends to \(f(C) \).

Therefore, we get a contradiction in both cases, so the procedure is finite, and we proved previously that it gives a nice oscillating partition for \(f \).

Proposition 3. Suppose that \(\delta > 0 \), \(f \in C[a, b] \), \(f \) is not constant in any interval, and \(f \) is locally increasing or decreasing at \(a \) from the right and also at \(b \) from the left.

(a) Then there exists a nice \(\delta \)-fine partition for \(f \).

(b) If we also suppose that \(f \) is not monotone in any interval then there exists a nice oscillating \(\delta \)-fine partition, too.

Proof. Take an arbitrary \(\delta/2 \)-fine partition \(a = y_0 < \cdots < y_n = b \) of \([a, b]\). Let \(z_0 = a \), \(z_{n+1} = b \). For \(i = 1, 2, \ldots, n \), if \(f \) is monotone in \([y_{i-1}, y_i] \) then let \(z_i \) be an arbitrary interior point of the interval, otherwise let \(z_i \) be a local extreme point in \((y_{i-1}, y_i) \).

We can apply Proposition 2 for \(f|\{z_{i-1}, z_i\} \). We can link the nice partitions that we have so far, so we get a nice \(\delta \)-fine partition for \(f \). If \(f \) is not monotone in any interval then all the \(z_i \) \((i = 1, \ldots, n) \) are local extreme points. For this reason, in this case, if we link the nice oscillating partitions then the property of oscillation transfers, so we get a nice oscillating \(\delta \)-fine partition.

The following two statements will construct two nice matching sequences for two matching functions.

Proposition 4. Suppose that \(f \asymp g \), \(f \) is not monotone in any interval, and \(\delta > 0 \). Then there exists a nice \(\delta \)-fine sequence \(u_0, u_1, \ldots, u_m \) for \(f \) and a nice sequence \(v_0, \ldots, v_m \) for \(g \) such that \(f(u_i) = g(v_i) \) \((i = 0, \ldots, m)\).

Proof. Again we can assume that \(f, g \in \mathcal{F} \). Applying Proposition 3(b) to \(f \), we know that there exists a nice oscillating \(\delta \)-fine partition \(0 = x_0 < x_1 < \cdots < x_n = 1 \) for \(f \). Let \(f_1(x_i) = f(x_i) \) \((i = 0, 1, \ldots, n) \) and let \(f_1 \) be linear between \(x_i \) and \(x_{i+1} \) \((i = 0, \ldots, n - 1) \). We have \(f_1 \asymp g \) and \(f_1 \) is piecewise strictly monotone, therefore, \(f_1 \sim g \) by Proposition 1; that is, there exist \(k, h \in \mathcal{F} \) such that \(f_1 \circ h = g \circ k \).

Look at the function \(h \) (see Figure 3 on the next page). Let \(\alpha_1 \) be the smallest value in \([0, 1]\) satisfying \(h(\alpha_1) = x_1 \). Let \(\alpha_2 \) be the smallest value in \([\alpha_1, 1]\) for which the value of \(h \) is \(x_0 \) or \(x_2 \), and generally, if \(h(\alpha_i) = x_j \) then \(\alpha_{i+1} \) is the smallest value in \([\alpha_i, 1]\) for which the value of \(h \) is \(x_{j-1} \) or \(x_{j+1} \). Since \(h \) is continuous, our process terminates after a finite number of steps, which means that there exists an index \(l \) such that \(h(\alpha_l) = l(= x_n) \) and \(h|_{[\alpha_l, 1]} > x_{n-1} \).
Figure 3

Let γ_i be the greatest point in $[0, \alpha_{i+1}]$ satisfying $h(\gamma_i) = h(\alpha_i)$. Let $\gamma_0 = 0$, $\gamma_l = 1$. It is clear that $\alpha_{i+1} > \gamma_i \geq \alpha_i$ and $h([\gamma_i, \alpha_{i+1}]) \in \mathcal{F}$ ($i = 1, \ldots, l-1$).

Let j be the index for which $h(\gamma_i) = h(\alpha_i) = x_j$. Since $g \circ k = f_1 \circ h$, it follows that

1. $g(k(\gamma_i)) = f_1(h(\gamma_i)) = f_1(x_j) = f(x_j) = f(h(\gamma_i))$

and

2. $g(k(\alpha_i)) = f_1(h(\alpha_i)) = f_1(x_j) = f(h(\alpha_i))$.

By definition $h(\alpha_{i+1}) = x_{j+\varepsilon}$ where $\varepsilon = \pm 1$, $h([\gamma_i, \alpha_{i+1}]) = [h(\gamma_i), h(\alpha_{i+1})]$ $= [x_j, x_{j+\varepsilon}]$. On the other hand, x_0, \ldots, x_n is a nice partition for f and therefore

3. $f([h(\gamma_i), h(\alpha_{i+1})]) = f([x_j, x_{j+\varepsilon}]) = [f(x_j), f(x_{j+\varepsilon})]$

and

$$g([k(\gamma_i), k(\alpha_{i+1})]) \subset g(k([\gamma_i, \alpha_{i+1}]))$$

$$= f_1(h([\gamma_i, \alpha_{i+1}])) = f_1([h(\gamma_i), h(\alpha_{i+1})]) = [f_1(h(\gamma_i)), f_1(h(\alpha_{i+1}))]$$

$$= [g(k(\gamma_i)), g(k(\alpha_{i+1}))].$$

Therefore obviously

4. $g([k(\gamma_i), k(\alpha_{i+1})]) = [g(k(\gamma_i)), g(k(\alpha_{i+1}))].$

Equalities (3) and (4) imply that

5. $f([h(\gamma_i), h(\alpha_{i+1})]) \in \mathcal{F}$ and $g([k(\gamma_i), k(\alpha_{i+1})]) \in \mathcal{F}$ ($i = 0, \ldots, l-1$).

Since x_0, \ldots, x_n is a nice oscillating partition for f, $h(\alpha_i) = x_j$ is a local extremum of f. We can assume that this is a local minimum point. In this
case, \(f(x_{j-1}) > f(x_j) < f(x_{j+1}) \). Let \(\beta_i \) be a maximum point of \(f \circ h = g \circ k \) in \([\alpha_i, \gamma_i]\), and let \(M_i \) be the maximum value here. From the definition, \(h([\alpha_i, \gamma_i]) \subset [x_{j-1}, x_{j+1}] \) and \(f_i([x_{j-1}, x_{j+1}]) \geq f(x_j) \), therefore for all \(t \in [\alpha_i, \gamma_i] \) we have
\[
g(k(\beta_i)) = M_i \geq g(k(t)) = f_i(h(t)) \geq f(x_j) = g(k(\alpha_i)) = g(k(\gamma_i)).
\]
Therefore
\[
g(k([\alpha_i, \gamma_i])) \subset [f(x_j), M_i] = [g(k(\alpha_i)), g(k(\beta_i))].
\]
On the other hand,
\[
g(k([\alpha_i, \gamma_i])) \supset g(k([\alpha_i, \beta_i])) \supset g([k(\alpha_i), k(\beta_i)]).
\]
So we obtain \(g([k(\alpha_i), k(\beta_i)]) = [g(k(\alpha_i)), g(k(\beta_i))] \). By similar arguments
\[
g([k(\beta_i), k(\gamma_i)]) = [g(k(\beta_i)), g(k(\gamma_i))],
\]
therefore,
\[
g([k(\beta_i), k(\gamma_i)]), g([k(\alpha_i), k(\beta_i)]) \in \mathcal{F}
\]
if \(k(\beta_i) \neq k(\gamma_i), k(\alpha_i) \neq k(\beta_i) \), which holds if and only if \(\alpha_i \neq \gamma_i \).

Now \(h([\alpha_i, \gamma_i]) \subset [x_{j-1}, x_{j+1}] \) implies \(f \circ h([\alpha_i, \gamma_i]) \subset f_i([x_{j-1}, x_{j+1}]) = f([x_{j-1}, x_{j+1}]) \). Therefore, \(f \) takes the value of \(M_i \) in \([x_{j-1}, x_{j+1}]\). Let \(z_i \) be the nearest such point to \(x_j \). In this case \(f([z_i, z_i]) = f([x_j, \beta_i]) = [f(x_j), f(z_i)] \). Therefore,
\[
f([h(\alpha_i), z_i]) = f([z_i, h(\gamma_i)]) \in \mathcal{F} \quad \text{if} \quad \alpha_i \neq \gamma_i \quad (i = 1, \ldots, l)
\]
and
\[
g(k(\beta_i)) = M_i = f(z_i) \quad (i = 1, \ldots, l).
\]
Let \(\{u_i\} \) and \(\{v_i\} \) be the sequences obtained from the sequences
\[
0 = h(\gamma_0), h(\alpha_1), z_1, h(\gamma_1), h(\alpha_2), z_2, h(\gamma_2), \ldots, h(\alpha_l), z_l, h(\gamma_l) = 1
\]
and
\[
0 = k(\gamma_0), k(\alpha_1), k(\beta_1), k(\gamma_1), k(\alpha_2), k(\beta_2), k(\gamma_2), \ldots,
\]
\[
k(\gamma_i), k(\beta_i), k(\gamma_i) = 1
\]
after omitting the repeating terms. (We have to omit \(z_i, h(\gamma_i), k(\beta_i), \) and \(k(\gamma_i) \) when \(\alpha_i = \gamma_i \).)

Equations (5), (6), and (7) show that these are nice sequences for \(f \) and \(g \). Equations (1), (2), and (8) show that \(f(u_i) = g(v_i) \) \((i = 0, \ldots, m)\). \(x_0 < \cdots < x_n \) is \(\delta \)-fine and \(z_i \in [x_{j-1}, x_{j+1}] \), so \(\{u_i\} \) is \(\delta \)-fine. Therefore we have the desired sequences.

The following statement is an almost trivial corollary of the preceding statement.

Proposition 5. Suppose \(f \bowtie g \) with neither \(f \) nor \(g \) monotone in any interval and \(\delta > 0 \).

Then there exists a nice sequence for \(f \) and a nice sequence for \(g \) such that both sequences are \(\delta \)-fine and \(f(x_i) = g(y_i) \) \((i = 0, \ldots, n)\).

Proof. We can apply Proposition 4 to \(f \), \(g \), and \(\delta \), so we get the sequences \(\{u_i\} \) and \(\{v_i\} \). Since \(f(u_i) = g(v_i) \), it follows that \(f([u_i, u_{i+1}]) \bowtie g([v_i, v_{i+1}]) \).
(i = 0, \ldots, m - 1). We can apply Proposition 4 to g|[v_i, v_{i+1}], f|[u_i, u_{i+1}], and δ instead of f, g, and δ. Linking the constructed sequences, we will obviously get the desired sequences \{x_i\} and \{y_i\}.

Using this statement we can prove that any pair of functions in a large class of functions is climbable.

Proposition 6. If \(f, g \in \mathcal{F} \) and neither \(f \) nor \(g \) is monotone in any interval then \(f \sim g \).

Proof. Let \(\delta_1 = 1/2 \). Let us use the preceding statement for \(f, g \), and \(\delta_1 \), we get the nice \(\delta_1 \)-fine sequences \(\{x_i\} \) and \(\{y_i\} \). For every \(i \in \{0, 1, \ldots, n\} \), let \(h_1(i/n) = x_i \), \(k_1(i/n) = y_i \), and let \(h_1 \) and \(k_1 \) be linear between two such points.

Let \(\delta_2 < \min\{1/2^2, |x_i - x_{i-1}|, |y_i - y_{i-1}| : i = 1, \ldots, n\} \). Applying Proposition 5 to the functions \(f|[x_{i-1}, x_i] \approx g|[y_{i-1}, y_i] \) and \(\delta_2 \), we get the nice sequences \(\{x_{ij}\}_{j=0}^n \) and \(\{y_{ij}\}_{j=0}^n \). Let

\[
\begin{align*}
h_2\left(\frac{i}{n} + \frac{j}{n \cdot n_1}\right) &= x_{i,j}, \\
k_2\left(\frac{i}{n} + \frac{j}{n \cdot n_1}\right) &= y_{i,j},
\end{align*}
\]

and let \(h_2 \) and \(k_2 \) be linear between two such points.

Let \(\delta_3 < \min\{1/2^3, |x_{i,j} - x_{i',j'}|, |y_{i,j} - y_{i',j'}| : i, j \in \{1, \ldots, n\} \} \) and continue this procedure infinitely. We get the functions \(h_1, h_2, h_3, \ldots \) and \(k_1, k_2, k_3, \ldots \) in \(\mathcal{F} \).

In \(l_1 < l_2 \) then \(|h_{i_1} - h_{i_2}|, |k_{i_1} - k_{i_2}| < \delta_3 < 1/2^{l_1} \), therefore, \(\{h_i\} \) and \(\{k_i\} \) are uniformly convergent. Denote their limits by \(h \) and \(k \), then \(h, k \in \mathcal{F} \).

At the point

\[
t = \frac{i_1}{n} + \frac{i_2}{n \cdot n_1} + \cdots + \frac{i_m}{n \cdot n_{i_1} \cdots n_{i_{m-1}}},
\]

we have \(h_m(t) = h_{m+1}(t) = h_{m+2}(t) = \cdots \), so \(h(t) = h_m(t) \) and clearly \(k(t) = k_m(t) \), too. Therefore

\[
f \circ h(t) = f \circ h_m(t) = f(x_{i_1}, \ldots, i_m) = g(y_{i_1}, \ldots, i_m) = g \circ k_m(t) = g \circ k(t).
\]

The number \(\delta_m \) was chosen so small that for every \((i_1, \ldots, i_{m-1}) \) we have \(n_{i_1}, \ldots, n_{i_{m-1}} > 1 \). For this reason the set of points

\[
\frac{i_1}{n} + \cdots + \frac{i_m}{n \cdot n_{i_1} \cdots n_{i_{m-1}}}
\]

is a dense set in \([0, 1]\). Therefore the continuous functions \(f \circ h \) and \(g \circ k \) are equal in a dense set, which means \(f \circ h = g \circ k \), in other words, \(f \sim g \).

After this it will be easy to prove the promised theorem.

Theorem. If \(f, g \in \mathcal{F} \) and neither \(f \) nor \(g \) is constant in any interval then \(f \sim g \).

Proof. Let us modify \(f \) in every maximal monotone portion, \([a, b] \subset [0, 1]\), as follows. We replace \(f \) in \([a, b]\) by a function that is not monotone in any subinterval of \([a, b]\), equal to \(f \) at the points \(a \) and \(b \), and its range is the interval \([f(a), f(b)]\). Denote the function we obtained by \(f_1 \). Put \(f_2 = f^{-1} \circ f_1 \) in the (strictly) monotone portions of \(f \), and let \(f_2 \) be the identity function.
otherwise. This definition makes sense, \(f_1 = f \circ f_2, f_1, f_2 \in \mathcal{F} \), and \(f_1 \) is not monotone in any interval.

We can do the same with \(g \), and we get the functions \(g_1 \) and \(g_2 \). According to Proposition 6, there exists \(h_1 \) and \(k_1 \) in \(\mathcal{F} \) such that \(f_1 \circ h_1 = g_1 \circ k_1 \).

Let \(h = f_2 \circ h_1 \), \(k = g_2 \circ k_1 \). Then \(h, k \in \mathcal{F} \) and

\[
 f \circ h = f \circ f_2 \circ h_1 = f_1 \circ h_1 = g_1 \circ k_1 = g \circ g_2 \circ k_1 = g \circ k,
\]

which means that \(f \sim g \).

Remarks. This theorem (in fact, also Proposition 6) shows that two typical functions from \(\mathcal{F} \) are climbable. Of course, it would be interesting to characterize nonclimbable pairs \((f, g)\). Our conjecture is that there is no simple characterization, maybe the set \(\{(f, g) \mid f, g \in \mathcal{F}, f \not\sim g\} \) is not even a Borel subset of \(\mathcal{F} \times \mathcal{F} \).

References

PULI SÉTÁNY 21, H-1213, BUDAPEST, HUNGARY

E-mail address: elek@ludens.elte.hu