Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Distinct $ 3$-manifolds with all $ {\rm SU}(2)\sb q$ invariants the same


Author: W. B. R. Lickorish
Journal: Proc. Amer. Math. Soc. 117 (1993), 285-292
MSC: Primary 57N10; Secondary 17B37, 57M25
DOI: https://doi.org/10.1090/S0002-9939-1993-1129882-1
MathSciNet review: 1129882
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Witten's $ \operatorname{SU} {(2)_q}$ invariants do not classify $ 3$-manifolds.


References [Enhancements On Off] (What's this?)

  • [1] C. Blanchet, N. Habegger, G. Masbaum, and P. Vogel, Three-manifold invariants derived from the Kauffman bracket, preprint, Université de Nantes 1991. MR 1191373 (94a:57010)
  • [2] F. Bonahon and L. C. Siebenmann, New geometric splittings of classical knots, London Math. Soc. Lecture Note Ser., vol. 75, Cambridge Univ. Press, Cambridge and New York.
  • [3] G. Burde and H. Zieschang, Knots, De Gruyter, Berlin and New York, 1985. MR 808776 (87b:57004)
  • [4] J. H. Conway, An enumeration of knots and links, Computational problems in abstract algebra (J. Leech, ed.), Pergamon Press, New York, 1969, pp. 329-358. MR 0258014 (41:2661)
  • [5] C. McA. Gordon and J. Luecke, Knots are determined by their complements, J. Amer. Math. Soc. 2 (1989), 371-415. MR 965210 (90a:57006a)
  • [6] J. Hempel, Construction of orientable $ 3$-manifolds, Topology of $ 3$-manifolds and related topics (M. K. Fort Jr., ed.), Prentice Hall, Englewood Cliffs, NJ, 1962, pp. 207-212. MR 0140115 (25:3538)
  • [7] -, $ 3$-manifolds, Ann. of Math. Stud., vol. 86, Princeton Univ. Press, Princeton, NJ, 1976. MR 0415619 (54:3702)
  • [8] W. H. Jaco and P. B. Shalen, Seifert fibered spaces in $ 3$-manifolds, Mem. Amer. Math. Soc., vol. 21, no. 220, Amer. Math. Soc., Providence, RI, 1979. MR 539411 (81c:57010)
  • [9] K. Johannson, Homotopy equivalences of $ 3$-manifolds with boundary, Lecture Notes in Math., vol. 761, Springer-Verlag, Berlin, Heidelberg, New York, 1979. MR 551744 (82c:57005)
  • [10] R. C. Kirby and P. Melvin, The $ 3$-manifold invariants of Witten and Reshetikhin-Turaev for $ {\mathbf{sl}}(2,\mathbb{C})$, Invent. Math. 105 (1991), 473-545. MR 1117149 (92e:57011)
  • [11] W. B. R. Lickorish, Linear skein theory and link polynomials, Topology Appl. 27 (1987), 265-274. MR 918536 (89b:57005)
  • [12] -, The panorama of polynomials for knots, links and skeins, Braids (J. S. Birman and A. Libgober, eds.), Contemp. Math., vol. 78, Amer. Math. Soc., Providence, RI, 1988, pp. 399-414. MR 975091 (90d:57003)
  • [13] -, Polynomials for links, Bull. London Math. Soc. 20 (1988), 558-588. MR 980759 (90d:57004)
  • [14] -, Three-manifolds and the Temperley-Lieb algebra, Math. Ann. 290 (1991), 657-670. MR 1119944 (92e:57014)
  • [15] -, Calculations with the Temperley-Lieb algebra, Preprint, Univ. of Cambridge, 1990.
  • [16] H. R. Morton and P. Traczyk, The Jones polynomials of satellite links around mutants, Braids (J. S. Birman and A. Libgober, eds.), Contemp. Math., vol. 78, Amer. Math. Soc. Providence, RI, 1988, pp. 575-585. MR 975096 (89k:57015)
  • [17] N. Y. Reshetikhin and V. G. Turaev, Invariants of $ 3$-manifolds via link polynomials and quantum groups. Invent. Math. 103 (1991), 547-597. MR 1091619 (92b:57024)
  • [18] H. F. Trotter, Non-invertible knots exist, Topology 2 (1964), 341-358. MR 0158395 (28:1618)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 57N10, 17B37, 57M25

Retrieve articles in all journals with MSC: 57N10, 17B37, 57M25


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1993-1129882-1
Article copyright: © Copyright 1993 American Mathematical Society

American Mathematical Society