Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)



Real analytic Radon transforms on rank one symmetric spaces

Author: Eric Todd Quinto
Journal: Proc. Amer. Math. Soc. 117 (1993), 179-186
MSC: Primary 44A12; Secondary 43A55
MathSciNet review: 1135080
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Using microlocal techniques, we prove support theorems for Radon transforms with real analytic measures on horocycles in rank one symmetric spaces. We generalize Helgason's support theorem to this case and prove a new local support theorem.

References [Enhancements On Off] (What's this?)

  • [Bo] J. Boman, An example of non-uniqueness for a generalized Radon transform, J. Analyse Math. (to appear). MR 1771259 (2001g:32014)
  • [BQ1] J. Boman and E. T. Quinto, Support theorems for real analytic Radon transforms, Duke Math. J. 55 (1987), 943-948. MR 916130 (89m:44004)
  • [BQ2] -, Support theorems for real analytic Radon transforms on line complexes in $ {\mathbb{R}^3}$, Trans. Amer. Math. Soc. (to appear).
  • [Co] A. Cormack, A Radon transform on a family or curves in the plane. I, Proc. Amer. Math. Soc. 83 (1981), 325-330; II, Proc. Amer. Math. Soc. 86 (1982), 293-298. MR 624923 (83b:44001)
  • [Fi] D. Finch, Uniqueness of the attenuated X-ray transform in the physical range, Inverse Problems 2 (1986), 197-203. MR 847534 (87m:92021)
  • [Gl] J. Globevnik, A support theorem for the X-ray transform, J. Math. Anal. Appl. (to appear). MR 1151072 (93g:44004)
  • [GQ] F. Gonzalez and E. T. Quinto, Microlocal analysis and Radon transforms on higher rank symmetric spaces, 1992.
  • [GU] A. Greenleaf and G. Uhlmann, Non-local inversion formulas in integral geometry, Duke J. Math. 58 (1989), 205-240. MR 1016420 (91b:58251)
  • [G1] V. Guillemin, Some remarks on integral geometry, unpublished, 1975.
  • [G2] -, On some results of Gelfand in integral geometry, Proc. Sympos. Pure Math., vol. 43, Amer. Math. Soc., Providence, RI, 1985, pp. 149-155. MR 812288 (87d:58137)
  • [GS] V. Guillemin and S. Sternberg, Geometric asymptotics, Amer. Math. Soc., Providence, RI, 1977. MR 0516965 (58:24404)
  • [He1] S. Helgason, Differential geometry and symmetric spaces, Academic Press, New York, 1962. MR 0145455 (26:2986)
  • [He2] -, Duality and Radon transform for symmetric spaces, Amer J. Math. 85 (1963), 667-692. MR 0158409 (28:1632)
  • [He3] -, A duality for symmetric spaces, with applications to group representations, Adv. in Math. 5 (1970), 153-180. MR 0263988 (41:8587)
  • [He4] -, The surjectivity of invariant differential operators on symmetric spaces. I, Ann. of Math. (2) 98 (1973), 451-479. MR 0367562 (51:3804)
  • [He5] -, Groups and geometric analysis, Academic Press, New York, 1984. MR 754767 (86c:22017)
  • [Hö] L. Hörmander, The analysis of linear partial differential operators. I, Springer, New York, 1983. MR 717035 (85g:35002a)
  • [Ka] A. Kaneko, Introduction to hyperfunctions, Kluwer, New York, 1989. MR 1026013 (90m:32017)
  • [O] J. Orloff, Invariant Radon transforms on a symmetric space, Contemp. Math., vol. 113, Amer. Math. Soc., Providence, RI, 1990, pp. 233-242. MR 1108657 (93c:53056)
  • [Q1] E.T. Quinto, The dependence of the generalized Radon transform on defining measures, Trans. Amer. Math. Soc. 257 (1980), 331-346. MR 552261 (81a:58048)
  • [Q2] -, The invertibility of rotation invariant Radon transforms, J. Math. Anal. Appl. 91 (1983), 510-522; Erratum, J. Math. Anal. Appl. 94 (1983), 602-603. MR 690884 (84j:44007a)
  • [Q3] -, Tomographic reconstructions from incomplete data-numerical inversion of the exterior Radon transform, Inverse Problems 4 (1988), 867-876. MR 965651 (89k:44010)
  • [SKK] M. Sato, T. Kawai, and M. Kashiwara, Hyperfunctions and pseudodifferential equations, Lecture Notes in Math., vol. 287, Springer-Verlag, New York, 1973, pp. 265-529. MR 0420735 (54:8747)
  • [ShK] L. Shepp and J. Kruskal, Computerized tomography: the new medical X-ray technology, Amer. Math. Monthly 85 (1978), 420-439. MR 1538734
  • [So] D. Solmon, The X-ray transform, J. Math. Anal. Appl. 56 (1976), 51-66. MR 0481961 (58:2051)
  • [Tr] F. Treves, Introduction to pseudodifferential and Fourier integral operators. I, Plenum Press, New York, 1980. MR 597145 (82i:58068)
  • [Wa] N. Wallach, Harmonic analysis on homogeneous spaces, Dekker, New York, 1973. MR 0498996 (58:16978)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 44A12, 43A55

Retrieve articles in all journals with MSC: 44A12, 43A55

Additional Information

Keywords: Radon transform on horocycles, symmetric space, support theorems, microlocal analysis
Article copyright: © Copyright 1993 American Mathematical Society

American Mathematical Society