Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Fractional differentiation in the self-affine case. III. The density of the Cantor set


Authors: N. Patzschke and M. Zähle
Journal: Proc. Amer. Math. Soc. 117 (1993), 137-144
MSC: Primary 28A75; Secondary 26A33, 60D05
DOI: https://doi.org/10.1090/S0002-9939-1993-1143022-4
MathSciNet review: 1143022
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We compute the fractional density of the middle-third Cantor measure explicitly. Its numerical value is 0.62344....


References [Enhancements On Off] (What's this?)

  • [1] T. Bedford and A. Fisher, Analogues of the Lebesgue density theorem for fractal sets of reals and integers, Preprint, Delft Univ. of Tech., Report of the Dept. of Tech. Math. and Infor. No. 89-88, 1989. MR 1132856 (92j:58058)
  • [2] T. Bedford and T. Kamae, Stieltjes integration and stochastic calculus with respect to self-affine functions, Preprint, Delft Univ. of Tech., Report of the Faculty of Tech. Math. and Infor. No. 90-24, 1990. MR 1137651 (93d:60096)
  • [3] K. Falconer, Fractal geometry, Wiley, 1990. MR 1102677 (92j:28008)
  • [4] H. Federer, Colloquium lectures on geometric measure theory, Bull. Amer. Math. Soc. 84 (1978), 291-338. MR 0467473 (57:7330)
  • [5] T.-Y. Hu and K.-S. Lau, The sum of Rademacher functions and Hausdorff dimension, Math. Proc. Cambridge Philos. Soc. (to appear). MR 1049763 (91d:28020)
  • [6] -, Fractal dimension and singularities of the Weierstrass type functions, preprint.
  • [7] T. Kamae, A characterization of self-affine functions, Japan J. Appl. Math. 3 (1986), 271-280. MR 899224 (88i:26014)
  • [8] N. Kôno, On self-affine functions, Japan J. Appl. Math. 3 (1986), 259-269. MR 899223 (88i:26013)
  • [9] -, On self-affine functions. II, Japan J. Appl. Math. 5 (1988), 441-454. MR 965874 (90c:26024)
  • [10] J. Mecke, Stationäre zufällige Maße auf lokalkompakten abelschen Gruppen, Z. Wahrsch. Verw. Gebiete 9 (1967), 36-58. MR 0228027 (37:3611)
  • [11] N. Patzschke and M. Zähle, Fractional differentiation in the self-affine case I. Random functions, Stochastic Process Appl. (to appear). MR 1190912 (93j:60064)
  • [12] N. Pazschke and U. Zähle, Self-similar random measures IV. The recursive construction model of Falconer, Graf, and Mauldin and Williams, Math. Nachr. 149 (1990), 285-302. MR 1124811 (92j:28007)
  • [13] D. Preiss, Geometry of measures in $ {{\mathbf{R}}^n}$: Distribution, rectifiability, and densities, Ann. of Math. (2) 125 (1987), 537-643. MR 890162 (88d:28008)
  • [14] D. Stoyan, W. S. Kendall, and J. Mecke, Stochastic geometry and its applications, Wiley, 1987. MR 895588 (88j:60034a)
  • [15] C. Tricot, Rectifiable and fractal sets, CRM-1626, preprint. MR 1140727
  • [16] -, Local convex envelopes of a curve, and the value of its fractal dimension, preprint.
  • [17] U. Zähle, Self-similar random measures I. Notion, carrying Hausdorff dimension and hyperbolic distribution, Probab. Theory Related Fields 80 (1988), 79-100. MR 970472 (89m:28014)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 28A75, 26A33, 60D05

Retrieve articles in all journals with MSC: 28A75, 26A33, 60D05


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1993-1143022-4
Article copyright: © Copyright 1993 American Mathematical Society

American Mathematical Society