Fractional differentiation in the self-affine case. III. The density of the Cantor set

Authors:
N. Patzschke and M. Zähle

Journal:
Proc. Amer. Math. Soc. **117** (1993), 137-144

MSC:
Primary 28A75; Secondary 26A33, 60D05

DOI:
https://doi.org/10.1090/S0002-9939-1993-1143022-4

MathSciNet review:
1143022

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We compute the fractional density of the middle-third Cantor measure explicitly. Its numerical value is 0.62344....

**[1]**T. Bedford and A. Fisher,*Analogues of the Lebesgue density theorem for fractal sets of reals and integers*, Preprint, Delft Univ. of Tech., Report of the Dept. of Tech. Math. and Infor. No. 89-88, 1989. MR**1132856 (92j:58058)****[2]**T. Bedford and T. Kamae,*Stieltjes integration and stochastic calculus with respect to self-affine functions*, Preprint, Delft Univ. of Tech., Report of the Faculty of Tech. Math. and Infor. No. 90-24, 1990. MR**1137651 (93d:60096)****[3]**K. Falconer,*Fractal geometry*, Wiley, 1990. MR**1102677 (92j:28008)****[4]**H. Federer,*Colloquium lectures on geometric measure theory*, Bull. Amer. Math. Soc.**84**(1978), 291-338. MR**0467473 (57:7330)****[5]**T.-Y. Hu and K.-S. Lau,*The sum of Rademacher functions and Hausdorff dimension*, Math. Proc. Cambridge Philos. Soc. (to appear). MR**1049763 (91d:28020)****[6]**-,*Fractal dimension and singularities of the Weierstrass type functions*, preprint.**[7]**T. Kamae,*A characterization of self-affine functions*, Japan J. Appl. Math.**3**(1986), 271-280. MR**899224 (88i:26014)****[8]**N. Kôno,*On self-affine functions*, Japan J. Appl. Math.**3**(1986), 259-269. MR**899223 (88i:26013)****[9]**-,*On self-affine functions*. II, Japan J. Appl. Math.**5**(1988), 441-454. MR**965874 (90c:26024)****[10]**J. Mecke,*Stationäre zufällige Maße auf lokalkompakten abelschen Gruppen*, Z. Wahrsch. Verw. Gebiete**9**(1967), 36-58. MR**0228027 (37:3611)****[11]**N. Patzschke and M. Zähle,*Fractional differentiation in the self-affine case*I.*Random functions*, Stochastic Process Appl. (to appear). MR**1190912 (93j:60064)****[12]**N. Pazschke and U. Zähle,*Self-similar random measures*IV.*The recursive construction model of Falconer, Graf, and Mauldin and Williams*, Math. Nachr.**149**(1990), 285-302. MR**1124811 (92j:28007)****[13]**D. Preiss,*Geometry of measures in*:*Distribution, rectifiability, and densities*, Ann. of Math. (2)**125**(1987), 537-643. MR**890162 (88d:28008)****[14]**D. Stoyan, W. S. Kendall, and J. Mecke,*Stochastic geometry and its applications*, Wiley, 1987. MR**895588 (88j:60034a)****[15]**C. Tricot,*Rectifiable and fractal sets*, CRM-1626, preprint. MR**1140727****[16]**-,*Local convex envelopes of a curve, and the value of its fractal dimension*, preprint.**[17]**U. Zähle,*Self-similar random measures*I.*Notion, carrying Hausdorff dimension and hyperbolic distribution*, Probab. Theory Related Fields**80**(1988), 79-100. MR**970472 (89m:28014)**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC:
28A75,
26A33,
60D05

Retrieve articles in all journals with MSC: 28A75, 26A33, 60D05

Additional Information

DOI:
https://doi.org/10.1090/S0002-9939-1993-1143022-4

Article copyright:
© Copyright 1993
American Mathematical Society