LINEAR DIFFERENTIAL EQUATIONS
WITH EXCEPTIONAL FUNDAMENTAL SETS. II

NORBERT STEINMETZ

(Communicated by Clifford J. Earle, Jr.)

ABSTRACT. We prove a sharp order estimate for entire functions of completely regular growth, whose zeros are distributed near finitely many rays \(\arg z = \omega_j \) in terms of the angles \(\omega_j \). This result then leads immediately to a proof of a conjecture of Hellerstein and Rossi concerning the distribution of zeros of the solutions of linear differential equations with polynomials coefficients.

1. Introduction

Let \(w_1, w_2 \) be linearly independent solutions of

\[
w'' + p(z)w = 0,
\]

where \(p \) is a nonconstant polynomial. From the well-known results of Hille [6, Chapter 5] on the asymptotic distribution of zeros, Gundersen [4] deduced that the exponent of convergence of the nonreal zeros of \(E = w_1 w_2 \) equals \(1 + \frac{1}{2} \deg p \). In an earlier paper, Hellerstein, Shen, and Williamson [5] showed that \(E \) has infinitely many nonreal zeros.

The methods in [4, 5] do not apply to the \(n \)th order case. In this paper we prove an analogon of Gundersen’s result for the solutions of \(n \)th order linear differential equations

\[
w^{(n)} + p_{n-2}(z)w^{(n-2)} + \cdots + p_0(z)w = 0
\]

with polynomial coefficients, which is even slightly sharper. In particular, we solve Problem 2.72 in [1], posed by Hellerstein and Rossi.

This is done by proving a sharp order estimate (Theorem 1) for entire functions of completely regular growth, which seems to be of independent interest.

2. Notation

Let \(E \) be an entire function of finite positive order \(\lambda \) and denote the counting function of zeros of \(E \) lying in the planar set \(S \) by \(N(r, 1/E, S) \). We say that the zeros of \(E \) are distributed near the rays

\[
\arg z = \omega_j, \quad 0 \leq \omega_1 < \omega_2 < \cdots < \omega_k < \omega_{k+1} = \omega_1 + 2\pi,
\]

Received by the editors June 9, 1990 and, in revised form, December 12, 1990.

©1993 American Mathematical Society

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use
if for every sufficiently small \(\delta > 0 \),

\[
N(r, 1/E, \omega_j + \delta < \arg z < \omega_{j+1} - \delta) = o(r^\lambda) \quad \text{as } r \to \infty
\]

\((j = 1, 2, \ldots, k)\).

The basic results in [8] for solutions of equation (2) can be summarized as follows:

Let \(w \) be a transcendental solution of (2), where \(p_0, \ldots, p_{n-2} \) are polynomials. Then \(w \) is a completely regular growing entire function of order \(\lambda \) (in the sense of Lewin [7]), \(0 < \lambda < \infty \), whose zeros are distributed near finitely many rays (3).

3. Results

We first prove a result on completely regular growing entire functions with radially distributed zeros, from which the main result concerning the distribution of zeros of a fundamental set of (3) follows.

Theorem 1. Let \(E \) be a completely regular growing entire function of order \(\lambda \), whose zeros are distributed near the rays (3). Then either

\[
\lambda < \frac{\pi}{\min(\omega_{j+1} - \omega_j)}
\]

or else

\[
\delta(0, E) > 0.
\]

Remark. There is a similar result [3, Corollary 1.2]: If the zeros of the entire function \(E \) are lying on the rays \(\arg z = \omega_j \) and if the order of \(E \) is finite, but sufficiently large (depending on the geometry of the rays), then \(\delta(0, E) > 0 \). For us it is important to have an explicit (and sharp) bound.

Theorem 2. Let \(\{w_1, w_2, \ldots, w_n\} \) be a fundamental set of (2), where \(p_0, \ldots, p_{n-2} \) are polynomials. Suppose that the zeros of \(\{w_1, \ldots, w_n\} \) are distributed near the rays (3). Then either

\[
\lambda(w_\nu) \leq \frac{\pi}{\min(\omega_{j+1} - \omega_j)}, \quad \nu = 1, \ldots, n,
\]

or else the coefficients in (2) are constants.

Remark. The product \(E = w_1w_2\cdots w_n \) is a completely regular growing entire function of order \(\lambda \), \(0 < \lambda < \infty \), or a polynomial, and the radial distribution of the zeros of \(\{w_1, \ldots, w_n\} \) corresponds to the function \(E \) (and its order).

For the sake of completeness we reformulate Theorem 2 in two special cases.

Corollary 1. Let \(\{w_1, \ldots, w_n\} \) be a fundamental set of (2), whose zeros are distributed near the rays \(\arg z = 2\pi j/k \) \((1 \leq j \leq k, \quad k \geq 2)\). Then

\[
\lambda(w_\nu) \leq k/2, \quad \nu = 1, \ldots, n.
\]

Corollary 2. Let \(\{w_1, \ldots, w_n\} \) be a fundamental set of (2), whose zeros are distributed near the real axis. Then the coefficients in (2) are constants.
4. Proof of Theorem 1

Since the function E has completely regular growth and since its zeros are distributed near the rays $\arg z = \omega_j$, there are complex numbers c_j such that

$$\log |E(z)| = \text{Re}(c_j z^\lambda) + o(|z|^\lambda).$$

This is true as $|z| \to \infty$ outside a set $\mathcal{E} \subseteq (0, \infty)$ of linear density zero:

$$\lim_{r \to \infty} \frac{\text{mes}(\mathcal{E} \cap [0, r])}{r} = 0$$

and uniformly in $\omega_j + \eta \leq \arg z \leq \omega_{j+1} - \eta$, $\eta > 0$ arbitrary.

Thus the contribution of the sector $\omega_j < \arg z < \omega_{j+1}$ to $m(r, E)$ and $m(r, 1/E)$ is asymptotically $M_j r^\lambda$ and $m_j r^\lambda$, respectively, where

$$M_j = \frac{1}{2\pi} \int_{\omega_j}^{\omega_{j+1}} \text{Re}(c_j e^{i\lambda \theta})^+ \, d\theta$$

and

$$m_j = \frac{1}{2\pi} \int_{\omega_j}^{\omega_{j+1}} \text{Re}(c_j e^{i\lambda \theta})^- \, d\theta$$

(as usual $x^+ = \max(0, x)$ and $x^- = \max(0, -x)$).

If we assume $\delta(0, E) = 0$, then we must have $m_j = 0$ ($1 \leq j \leq k$), but $M_j \neq 0$ for at least one j since E has order λ.

Thus $c_j \neq 0$ and $|c_j| \cos(\arg c_j + \lambda \theta) \geq 0$ in $\omega_j < \theta < \omega_{j+1}$ for at least one j, which gives

$$\lambda(\omega_{j+1} - \omega_j) \leq \pi$$

and so (7).

5. Proof of Theorem 2

Set $E = w_1 w_2 \cdots w_n$ and assume first that E is transcendental of order λ.

The Wronskian

$$W = W(w_1, w_2, \ldots, w_n)$$

is a constant c, say. Thus

$$m\left(r, \frac{1}{E}\right) = m\left(r, \frac{W}{E}\right) + O(1) = O(\log r)$$

by the lemma on the logarithmic derivative and so

$$\lambda \leq \pi / \min(\omega_{j+1} - \omega_j)$$

holds by Theorem 1.

However, if $\lambda < \max(\lambda(w_1), \ldots, \lambda(w_n))$, then by [9, Theorem 2] the coefficients of (2) are constants, and this is of course also true if E is a polynomial. Thus, either $\lambda = \max(\lambda(w_1), \ldots, \lambda(w_n))$ and (16) implies (7) or the coefficients of (2) are constants.
References

INSTITUT FÜR MATHEMATIK, UNIVERSITÄT DORTMUND, POSTFACH 500 500, D-4600 DORTMUND, GERMANY