Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)



A min-max principle with a relaxed boundary condition

Author: N. Ghoussoub
Journal: Proc. Amer. Math. Soc. 117 (1993), 439-447
MSC: Primary 58E05
MathSciNet review: 1089405
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: A standard Min-Max procedure to find critical points for a $ {C^1}$functional $ \varphi $ verifying a compactness condition of Palais-Smale type on a smooth Banach manifold $ X$ consists of finding an appropriate class $ \mathcal{F}$ of compact subsets of $ X$, all containing a fixed boundary $ B$, and then showing that the value $ c = {\inf _{A \in \mathcal{F}}}{\sup _{x \in A}}\varphi (x)$ is a critical level, provided it satisfies $ \sup \,\varphi (B) < c$. In this paper, we refine this procedure by relaxing the boundary condition.

References [Enhancements On Off] (What's this?)

  • [AE] J. P. Aubin and I. Ekeland, Applied non-linear analysis, Pure Appl. Math, Wiley, New York, 1984. MR 749753 (87a:58002)
  • [BN] H. Brezis and L. Nirenberg, Remarks on finding critical points, preprint, 1990. MR 1127041 (92i:58032)
  • [GP] N. Ghoussoub and D. Preiss, A general mountain pass principle for locating and classifying critical points, Ann. Inst. H. Poincaré Anal. Non Linéaire 6 (1989), 321-330. MR 1030853 (91a:58043)
  • [G1] N. Ghoussoub, Location, multiplicity and Morse Indices of min-max critical points, J. Reine Angew. Math. 417 (1991), 27-76. MR 1103905 (92e:58040)
  • [G2] N. Ghoussoub, New aspects of the calculus of variations in the large and applications to differential equations, monograph, 1991 (to appear).
  • [P] R. Palais, Lusternik-Schnirelman theory on Banach manifolds, Topology 5 (1966), 115-132. MR 0259955 (41:4584)
  • [R] P. H. Rabinowitz, Minimax methods in critical point theory with applications to differential equations, CBMS, No. 65, Amer. Math. Soc., Providence, RI, 1986. MR 845785 (87j:58024)
  • [S] A. Szulkin, Ljusternik-Schnirelmann theory on $ {C^1}$-manifold, Ann. Inst. H. Poincaré Analyse non linéaire, Vol. 5, 1988, pp. 119-139. MR 954468 (90a:58027)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 58E05

Retrieve articles in all journals with MSC: 58E05

Additional Information

Article copyright: © Copyright 1993 American Mathematical Society

American Mathematical Society