THE SUBALGEBRA OF $L^1(AN)$ GENERATED BY THE LAPLACIAN

WALDEMAR HEBISCH

(Communicated by J. Marshall Ash)

Abstract. We prove that for the Iwasawa AN groups corresponding to complex semisimple Lie groups, the subalgebra of $L^1(AN)$ associated to a distinguished laplacian is isomorphic with the algebra of integrable radial functions on \mathbb{R}^n.

In [1] Cowling et al. derived a formula for the heat semigroup generated by a distinguished laplacian on a large class of Iwasawa AN groups and proved that the maximal function constructed from the semigroup is of weak type $(1, 1)$.

In this paper we show that in the case of the AN groups corresponding to complex semisimple Lie groups the results of [1] can be strengthened once we notice that the subalgebra of $L^1(AN)$ associated to a distinguished laplacian is isomorphic with the algebra of integrable radial functions on \mathbb{R}^n. This implies that the maximal operators associated to the Riesz means are of weak type $(1, 1)$. Also the functional calculus for the laplacian on \mathbb{R}^n can be transferred to the distinguished laplacian on AN. This seems to be the first construction of a nonanalytic functional calculus on groups of exponential growth.

Let G denote a connected, complex semisimple Lie group and \mathfrak{g} its Lie algebra. Denote by θ a Cartan involution of \mathfrak{g}, and write

$$\mathfrak{g} = \mathfrak{k} \oplus \mathfrak{p}$$

for the associated Cartan decomposition. Fix a maximal abelian subspace \mathfrak{a} of \mathfrak{p}; this determines a root space decomposition

$$\mathfrak{g} = \mathfrak{g}_0 \oplus \sum_{\alpha \in \Lambda} \mathfrak{g}_\alpha,$$

Λ denoting the set of roots of the pair $(\mathfrak{g}, \mathfrak{a})$. Corresponding to a choice of the ordering of the roots, we have an Iwasawa decomposition

$$\mathfrak{g} = \mathfrak{a} \oplus \mathfrak{n} \oplus \mathfrak{k}.$$

Let $G = ANK$ be the corresponding Iwasawa decomposition of G. A distinguished laplacian on AN can be constructed as follows. Let $\pi: \mathfrak{g} \to \mathfrak{p}$ be the projection (defined by the Cartan decomposition). We define a positive definite form \tilde{B} on $\mathfrak{a} \oplus \mathfrak{n}$ setting $\tilde{B}(X, Y) = B(\pi X, \pi Y)$ where B is the Killing form.
on \(g \). Put \(n = \dim(AN) \). Choose an orthonormal (with respect to \(\tilde{B} \)) basis in \(a \oplus n \), say \(\{X_1, \ldots, X_n\} \).

Define the laplacian \(\Delta \) by setting

\[
\Delta f(x) = \sum_{j=1}^{n} \left(\frac{d}{dt} \right)^2 f(x \exp(tX_j))|_{t=0}.
\]

Denote by \(|x| \) the riemannian distance between \(e \) and \(x \) corresponding to the left-invariant riemannian structure induced by \(\tilde{B} \). Let \(\phi_0 \) be the distinguished spherical function (restricted to \(AN \))—\(\phi_0 \) may be defined as the unique function that is radial, i.e., we have \(\phi_0(x) = \psi(|x|) \) for some \(\psi \), and that satisfies the equation \(\Delta(\delta^{-1/2}\phi_0) = 0 \) where \(\delta \) is the modular function of \(AN \).

The heat kernel \(p_t \) corresponding to \(\Delta \) is given by the formula (see [1])

\[
p_t(x) = C_0 t^{-n/2} \phi_0(x) \delta^{-1/2}(x) e^{-|x|^2/(4t)}.
\]

Let \(A \) be the subalgebra of \(L^1(AN) \) (with respect to right-invariant Haar measure) generated by \(p_t \), \(t > 0 \).

1. **Theorem.** The operator \(T \) given by the formula

\[
(Tf)(x) = C_0(4\pi)^{n/2} \phi_0(x) \delta^{-1/2}(x) f(|x|)
\]

is an isometric algebra isomorphism between \(L^1_{\text{rad}}(\mathbb{R}^n) \) and \(A \).

Proof. Let \(V \) denote the vector space of all linear combinations of \(q_t \), \(t > 0 \), where \(q_t \) is the heat kernel on \(\mathbb{R}^n \). By the formula above, \(T \) restricted to \(V \) is an isomorphism of algebras. Moreover, for all \(f \in V \) we have

\[
\int_{AN} Tf = \int_{\mathbb{R}^n} f.
\]

On the other hand, if we denote by \(E \) the space \(L^1_{\text{rad}}(\mathbb{R}^n) \) for sufficiently large \(C \), then \(T \) is continuous from \(E \) into \(L^1(AN) \). Since \(V \) is dense in \(E \), it follows that \(T(E) \subset A \) and for all \(f \in E \) we have

\[
\int_{AN} Tf = \int_{\mathbb{R}^n} f.
\]

Decomposing a function \(f \) in \(E \) into its positive and negative part (which of course belong to \(E \)) we have

\[
\|f\|_{L^1_{\text{rad}}} = \int_{\mathbb{R}^n} f_+ + \int_{\mathbb{R}^n} f_- = \int_{AN} Tf_+ + \int_{AN} Tf_- = \|Tf\|_{L^1(AN)}.
\]

Now the closure of \(T|_V \) is an isometry of \(L^1_{\text{rad}}(\mathbb{R}^n) \) with \(A \). Obviously this closure is equal to \(T \), which ends the proof.

2. **Corollary.** The spectrum of \(\Delta \) on \(L^p(AN) \), \(\infty > p \geq 1 \), does not depend on \(p \) and equals \(R_+ \).

Let \(R_\alpha(x) = (1-x)_+^\alpha \). We put

\[
S_\alpha f = \sup_{t>0} |R_\alpha(-t\Delta)f|
\]

where \(R_\alpha(-t\Delta) \) is well defined by the spectral theorem.
3. **Corollary.** For \(\alpha > (n - 1)/2 \) the maximal operator \(S_\alpha \) for Riesz means of order \(\alpha \) is of weak type \((1, 1)\).

Proof. Let \(Mf = \sup_{t > 0} t^{-1} \int_0^t |f| * p_s \, ds \). On \(\mathbb{R}^n \), \(S_\alpha \) is majorized by \(M \). \(T \) preserves pointwise majorization of kernels, so this majorization holds also on \(AN \). But \(M \) is of weak type \((1, 1)\) by the Dunford-Schwartz maximal ergodic theorem.

4. **Corollary.** Let \(k > (n - 1)/2, \ t > 0, \ \varepsilon > 0, \ F \in C^k(\mathbb{R}), \) and
\[
\sup_{\lambda > 0} (1 + \lambda)^{l+\varepsilon} |F^{(l)}(\lambda)| < \infty, \quad l = 0, \ldots, k.
\]

Then the operator \(F(-t\Delta) \) (defined by the spectral theorem on \(L^1(\cap L^2) \)) is bounded on \(L^1(AN) \).

References