Phi-stable operators and inner approximation-solvability

Author:
Ram U. Verma

Journal:
Proc. Amer. Math. Soc. **117** (1993), 491-499

MSC:
Primary 47H17; Secondary 47H09, 65J15

DOI:
https://doi.org/10.1090/S0002-9939-1993-1127144-X

MathSciNet review:
1127144

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We extend, by applying a theorem of Petryshyn (1970), the approximation-solvability of the nonlinear functional equations involving strongly stable Hilbert space mappings to the case of strongly -stable mappings--a new and rather general class of mappings. These mappings constitute a generalization of monotone mappings. Finally, we upgrade the obtained results to the case of Banach space mappings.

**[1]**F. Browder and W. Petryshyn,*Approximation methods and the generalized topological degree for nonlinear mappings in Banach spaces*, J. Funct. Anal.**3**(1969), 217-245. MR**0244812 (39:6126)****[2]**K. Deimling,*Nonlinear functional analysis*, Springer-Verlag, New York, 1985. MR**787404 (86j:47001)****[3]**A. G. Kartsatos,*On the equation**in Banach spaces with weakly continuous duality maps*, Nonlinear Equations in Abstract Spaces, Academic Press, New York, 1978. MR**502538 (80k:47060)****[4]**M. A. Krasnosel'skii, G. M. Vainikko, P. P. Zabreiko, Ya. B. Rutitskii, and V. Ya. Stetsenko,*Approximation solution of operator equations*, English transl., Wolter-Noordhoff, Groningen, 1972. MR**0385655 (52:6515)****[5]**R. N. Mukherjee and T. Som,*On phi-monotone operators and variational inequalities*, Bull. Calcutta Math. Soc.**80**(1988), 201-205. MR**990970 (91b:47122)****[6]**W. Petryshyn,*Nonlinear equations involving noncompact operators*, Nonlinear Functional Analysis (Chicago, 1968), Proc. Sympos. Pure Math., vol. 18, part 1, Amer. Math. Soc., Providence, RI, 1970, pp. 206-233. MR**0271789 (42:6670)****[7]**-,*On the approximation-solvability of equations involving A-proper and pseudo-A-proper mappings*, Bull. Amer. Math. Soc.**81**(1975), 223-312. MR**0388173 (52:9010)****[8]**-,*Approximation-solvability of periodic boundary value problems via the A-proper mapping theory*, Proc. Sympos. Pure Math. vol. 45, Amer. Math. Soc., Providence, RI., 1986, pp. 261-282. MR**843614 (88d:47068)****[9]**W. O. Ray,*Phi-accretive operators and Ekeland's theorem*, J. Math. Anal. Appl.**88**(1982), 566-571. MR**667080 (84d:47069)****[10]**I. G. Rosen,*Convergence of Galerkin approximation for operators Riccati equations--A nonlinear evolution equation approach*, J. Math. Anal. Appl.**155**(1991), 226-248. MR**1089334 (91m:65169)****[11]**M. Théra,*Existence results for the nonlinear complementarity problem and applications to nonlinear analysis*, J. Math. Anal. Appl.**154**(1991), 572-584. MR**1088652 (92d:47085)****[12]**V. B. Trushin,*On the solution of certain nonlinear equations and variational inequalities*, Soviet Math. Dokl.**40**(1990), 521-524. MR**1036142 (91a:47087)****[13]**R. Verma,*Role of numerical range in approximation-solvability of nonlinear functional equations*, Appl. Math. Lett.**5**(1992), 25-27. MR**1154606****[14]**R. Verma and R. Mohapatra,*Application of numerical range to approximation-solvability of nonlinear functional equations*, PanAmerican Math. J.**1**(1991), 46-54. MR**1088866 (91m:65170)****[15]**E. Zeidler,*Nonlinear functional analysis and its applications*II/B:*Nonlinear monotone operators*, Springer-Verlag, Berlin and New York, 1990. MR**1033498 (91b:47002)**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC:
47H17,
47H09,
65J15

Retrieve articles in all journals with MSC: 47H17, 47H09, 65J15

Additional Information

DOI:
https://doi.org/10.1090/S0002-9939-1993-1127144-X

Article copyright:
© Copyright 1993
American Mathematical Society