Phi-stable operators and inner approximation-solvability

Author:
Ram U. Verma

Journal:
Proc. Amer. Math. Soc. **117** (1993), 491-499

MSC:
Primary 47H17; Secondary 47H09, 65J15

DOI:
https://doi.org/10.1090/S0002-9939-1993-1127144-X

MathSciNet review:
1127144

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We extend, by applying a theorem of Petryshyn (1970), the approximation-solvability of the nonlinear functional equations involving strongly stable Hilbert space mappings to the case of strongly -stable mappings--a new and rather general class of mappings. These mappings constitute a generalization of monotone mappings. Finally, we upgrade the obtained results to the case of Banach space mappings.

**[1]**F. E. Browder and W. V. Petryshyn,*Approximation methods and the generalized topological degree for nonlinear mappings in Banach spaces*, J. Functional Analysis**3**(1969), 217–245. MR**0244812****[2]**Klaus Deimling,*Nonlinear functional analysis*, Springer-Verlag, Berlin, 1985. MR**787404****[3]**Athanassios G. Kartsatos,*On the equation 𝑇𝑥=𝑦 in Banach spaces with weakly continuous duality maps*, Nonlinear equations in abstract spaces (Proc. Internat. Sympos., Univ. Texas, Arlington, Tex., 1977) Academic Press, New York, 1978, pp. 105–112. MR**502538****[4]**M. A. Krasnosel′skiĭ, G. M. Vaĭnikko, P. P. Zabreĭko, Ya. B. Rutitskii, and V. Ya. Stetsenko,*Approximate solution of operator equations*, Wolters-Noordhoff Publishing, Groningen, 1972. Translated from the Russian by D. Louvish. MR**0385655****[5]**R. N. Mukherjee and T. Som,*On phi-monotone operators and variational inequalities*, Bull. Calcutta Math. Soc.**80**(1988), no. 6, 401–405. MR**990970****[6]**W. V. Petryshyn,*Nonlinear equations involving noncompact operators*, Nonlinear Functional Analysis (Proc. Sympos. Pure Math., Vol. XVIII, Part 1, Chicago, Ill., 1968) Amer. Math. Soc., Providence, R.I., 1970, pp. 206–233. MR**0271789****[7]**W. V. Petryshyn,*On the approximation-solvability of equations involving 𝐴-proper and psuedo-𝐴-proper mappings*, Bull. Amer. Math. Soc.**81**(1975), 223–312. MR**0388173**, https://doi.org/10.1090/S0002-9904-1975-13728-1**[8]**W. V. Petryshyn,*Approximation-solvability of periodic boundary value problems via the 𝐴-proper mapping theory*, Nonlinear functional analysis and its applications, Part 2 (Berkeley, Calif., 1983) Proc. Sympos. Pure Math., vol. 45, Amer. Math. Soc., Providence, RI, 1986, pp. 261–282. MR**843614****[9]**William O. Ray,*Phi-accretive operators and Ekeland’s theorem*, J. Math. Anal. Appl.**88**(1982), no. 2, 566–571. MR**667080**, https://doi.org/10.1016/0022-247X(82)90215-3**[10]**I. G. Rosen,*Convergence of Galerkin approximations for operator Riccati equations—a nonlinear evolution equation approach*, J. Math. Anal. Appl.**155**(1991), no. 1, 226–248. MR**1089334**, https://doi.org/10.1016/0022-247X(91)90035-X**[11]**Michel Théra,*Existence results for the nonlinear complementarity problem and applications to nonlinear analysis*, J. Math. Anal. Appl.**154**(1991), no. 2, 572–584. MR**1088652**, https://doi.org/10.1016/0022-247X(91)90059-9**[12]**V. B. Trushin,*On the solution of some nonlinear equations and variational inequalities*, Dokl. Akad. Nauk SSSR**309**(1989), no. 2, 289–292 (Russian); English transl., Soviet Math. Dokl.**40**(1990), no. 3, 521–524. MR**1036142****[13]**Ram U. Verma,*Role of numerical range in approximation-solvability of nonlinear functional equations*, Appl. Math. Lett.**5**(1992), no. 2, 25–27. MR**1154606**, https://doi.org/10.1016/0893-9659(92)90105-I**[14]**Ram Verma and Ram Mohapatra,*Application of numerical range to approximation-solvability of nonlinear functional equations*, Panamer. Math. J.**1**(1991), 46–54. MR**1088866****[15]**Eberhard Zeidler,*Nonlinear functional analysis and its applications. II/B*, Springer-Verlag, New York, 1990. Nonlinear monotone operators; Translated from the German by the author and Leo F. Boron. MR**1033498**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC:
47H17,
47H09,
65J15

Retrieve articles in all journals with MSC: 47H17, 47H09, 65J15

Additional Information

DOI:
https://doi.org/10.1090/S0002-9939-1993-1127144-X

Article copyright:
© Copyright 1993
American Mathematical Society