Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 

 

Weakly confluent, $ 2$-to-$ 1$ maps on hereditarily indecomposable continua


Author: Jo W. Heath
Journal: Proc. Amer. Math. Soc. 117 (1993), 569-573
MSC: Primary 54F15
MathSciNet review: 1129879
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: One of the most important open questions today in the study of exactly $ 2$-to-$ 1$ maps is whether or not such a map can be defined on the pseudoarc. We show that there is no weakly confluent $ 2$-to-$ 1$ map defined on the pseudoarc. More precisely, it is shown that any reduced weakly confluent $ 2$-to-$ 1$ map defined on a hereditarily indecomposable metric continuum must be a confluent local homeomorphism. It follows from this that if there is a weakly confluent $ 2$-to-$ 1$ map from a hereditarily indecomposable continuum $ X$ onto a continuum $ Y$, then neither $ X$ nor $ Y$ can be treelike.


References [Enhancements On Off] (What's this?)


Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 54F15

Retrieve articles in all journals with MSC: 54F15


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1993-1129879-1
Keywords: Weakly confluent, $ 2$-to-$ 1$ map
Article copyright: © Copyright 1993 American Mathematical Society