TWO THEOREMS OF JOSEFSON-NISSENZWEIG TYPE FOR FRÉCHET SPACES

J. BONET, M. LINDSTRÖM, AND M. VALDIVIA

(Communicated by William J. Davis)

Abstract. We characterize the Fréchet-Montel (respectively, Fréchet-Schwartz) spaces by sequences in their dual spaces.

It is well known that a Fréchet space E is Montel (respectively, Schwartz) if and only if it is separable and every weak*-null sequence in E' also converges strongly to zero (respectively, converges uniformly to zero on some zero-neighbourhood in E). Because of the Josefson-Nissenzweig theorem [3], Jarchow asked in [5] if these two results are true without the assumption of the separability condition on the Fréchet space E.

In this short note we give a positive answer to both of these questions. These results were discovered during the Conference of Function Theory on Infinite-Dimensional Spaces held in the Universidad Complutense de Madrid from December 11-16, 1989. The Schwartz case had already been discovered independently by Lindström and Schlumprecht in [7] and by Bonet in [1].

We start by recalling the following result from [7], which is based on a very deep result due to Schlumprecht [8].

Theorem 1. Let E be a Fréchet space such that every weak*-null sequence in E' is also strongly null-convergent. Then E is reflexive.

Now we are ready to prove the announced results.

Theorem 2. A Fréchet space E is Montel (respectively, Schwartz) if and only if weak*-null sequence in E' is also strongly null-convergent (respectively, converges uniformly to zero on some zero-neighbourhood in E).

Proof. Only the Montel case needs a proof because every Fréchet-Montel space is separable.

If E is Montel then the condition is clearly necessary.

Let us now assume that every weak*-null sequence in E' is strongly null-convergent. By the theorem above [7] E must then be reflexive. Now we present two different proofs to show that E is Montel.

First, by [6, Remark 1] it is enough to show that U° is $\sigma(E', E)$-sequentially compact for every zero-neighbourhood U in E. To do this observe that E'_β
is a DF-space whose strong dual is E by reflexivity. Hence $\sigma(E', (E_H')') = \sigma(E', E)$. Now according to [2, Theorem 11, Example 1.2(C)], every DF-space is weakly angelic (see, e.g., [4]), and since U^o is always $\sigma(E', E)$-compact, it is also $\sigma(E', E)$-sequentially compact.

To give the second proof assume that E is not Montel. Since E is reflexive by the theorem above [7], there exists a weakly compact separable subset A of E that is not compact. Let F be the closed linear span of A. By a recent result of Valdivia in [9], given F we can find a closed separable subspace G of E that contains F and has a topological complement L in E. Certainly G is separable but not Montel. Hence there is a $\sigma(G', G)$-null sequence in $L^\perp = G'$ that is not $\beta(G', G)$-null convergent. Since G is complemented in E, this contradicts the assumption on E.

REFERENCES